$x \rightarrow \infty$時多項式型函式的極限
阿新 • • 發佈:2018-12-02
\[ \lim_{x \rightarrow \infty} \frac{\sqrt{4x^6-5x^5}-2x^3}{\sqrt[3]{27x^6+8x}} \\ =\lim_{x \rightarrow \infty}\frac{-x^5}{\sqrt[3]{27x^6+8x}(\sqrt{4x^6-5x^5}+2x^3)} \\ = \lim_{x \rightarrow \infty}\frac{-x^5}{(\frac{\sqrt[3]{27x^6+8x}}{\sqrt[3]{27x^6}} \times 3x^2)(\frac{\sqrt{4x^6-5x^5}+2x^3}{4x^3} \times 4x^3)} \\ = \lim_{x \rightarrow \infty}\frac{1}{(\frac{\sqrt[3]{27x^6+8x}}{\sqrt[3]{27x^6}} )(\frac{\sqrt{4x^6-5x^5}+2x^3}{4x^3})} \times \frac{-5x^5}{(3x^2)(4x^3)} \\ = \frac{1}{(\sqrt[3]{1+0})(\sqrt{\frac14+0}+\frac12)} \times \frac{-5}{12} \\ = \frac{-5}{12} \]