1. 程式人生 > >二叉樹的遍歷基本操作

二叉樹的遍歷基本操作

一、樹的儲存方式

1、雙親表示法:用指標表示出每個節點的雙親(和自己的資料):根節點沒有雙親,其他的節點都有自己的雙親)

2、孩子表示法:用指標指出每棵樹的孩子節點,每個節點給出3個欄位(資料,兩棵子樹)【節點欄位為樹的度加1】

3、雙親孩子表示法:將孩子表示法和雙親表示法結合在一起

4、孩子兄弟表示法:既表示出每一個節點第一個孩子節點,也表示出每個節點的下一個兄弟節點

二、二叉樹(每個節點只有兩個分支):根節點加上左子樹、和右子樹構成的。

1、二叉樹也可能為空樹,是一個有序樹

2、特點:

(1)每個節點最多有兩棵子樹,即二叉樹不存在度大於2的節點

(2)二叉樹的子樹有左右之分,其子樹的次序不能顛倒

3、分類:

滿二叉樹:節點個數為2^n-1

完全二叉樹:(完全二叉樹,有n個節點,求其高度,當成滿二叉樹的格式來求:lgn

:單支樹浪費空間多,完全二叉樹沒有任何浪費

  .h

#pragma once
# include<stdio.h>
# include<stdlib.h>
# include<string.h>
# include<malloc.h>
# include<assert.h>
typedef char DataType;
typedef struct BinTreeNode{
	struct BinTreeNode *_pLeft;//當前節點的左孩子
	struct BinTreeNode *_pRight;//當前節點的右孩子
	DataType _data;//節點裡面數據的型別
}Node, *PNode;
void CreateBinTree(PNode *pRoot, DataType array[], int size, DataType invalid);
void _CreateBinTree(PNode *pRoot, DataType array[], int size, int *index, DataType invalid);
PNode BuyBinTreeNode(DataType data);
PNode CopyBinTree(PNode pRoot);
void PreOrder(PNode pRoot);
void InOrer(PNode pRoot);
void PostOrder(PNode pRoot);
void DestroyBinTree(PNode *pRoot);
//二叉樹的其他操作//求二叉樹節點的個數
int BinTreeSize(PNode pRoot);
//求二叉樹葉子節點的個數
int BinTreeLeaf(PNode pRoot);
//求二叉樹第k層節點的個數
int BinTreekLevelNode(PNode pRoot, int k);
//求二叉樹的高度
int BinTreeHeight(PNode pRoot);
//判斷一個節點是否在一棵二叉樹中
int IsNodeInBinTree(PNode pRoot, PNode Node);
//找節點
PNode Find(PNode pRoot, DataType data);

.c

# include"tree.h"
void CreateBinTree(PNode *pRoot, DataType array[], int size, DataType invalid){
	int index = 0;
	_CreateBinTree(pRoot, array, size, &index, invalid);
}
void _CreateBinTree(PNode *pRoot, DataType array[], int size, int *index, DataType invalid){
	assert(pRoot);
	assert(index);
	if (*index < size&&array[*index] != invalid){
		*pRoot = BuyBinTreeNode(array[*index]);
		//建立根節點的左子樹  
		++(*index);
		_CreateBinTree(&(*pRoot)->_pLeft, array, size, index, invalid);
		//建立右子樹  
		_CreateBinTree(&(*pRoot)->_pRight, array, size, index, invalid);
	}
}
PNode BuyBinTreeNode(DataType data){
	PNode pNewNode = (PNode)malloc(sizeof(Node));
	if (NULL == pNewNode) {
		assert(0);
		return;
	}
	pNewNode->_data = data;
	pNewNode->_pLeft = NULL;
	pNewNode->_pRight = NULL; return pNewNode;
}
PNode CopyBinTree(PNode pRoot){
	PNode pNewRoot = NULL;
	//過濾空 
	if (pRoot)
		//拷貝根節點 {
		pNewRoot = BuyBinTreeNode(pRoot->_data);
if (pRoot->_pLeft)
//拷貝左子樹 
pNewRoot->_pLeft = CopyBinTree(pRoot->_pLeft);
if (pRoot->_pRight)
//拷貝右子樹 
pNewRoot->_pRight = CopyBinTree(pRoot->_pRight);
return pNewRoot;
}
void PreOrder(PNode pRoot){
//前序遍歷(根,左,右)
if (pRoot) {
	printf("%c  ", pRoot->_data);
	PreOrder(pRoot->_pLeft);
	PreOrder(pRoot->_pRight);
}
}
void InOrer(PNode pRoot){
//中序遍歷(左,根,右)
if (pRoot) {
	InOrer(pRoot->_pLeft);
	printf("%c  ", pRoot->_data);  InOrer(pRoot->_pRight);
}
}
void PostOrder(PNode pRoot){
//後序遍歷(左,右,根)
if (pRoot) {
	PostOrder(pRoot->_pLeft);
	PostOrder(pRoot->_pRight);
	printf("%c  ", pRoot->_data);
}
}
void DestroyBinTree(PNode *pRoot){
	assert(pRoot);
	if (*pRoot) {  //先銷燬左子樹  
		DestroyBinTree(&(*pRoot)->_pLeft);
		//銷燬右子樹  
		DestroyBinTree(&(*pRoot)->_pRight);
		//銷燬根節點  
		free(*pRoot);
		*pRoot = NULL;
	}
}
//求二叉樹節點總個數
int BinTreeSize(PNode pRoot){
	if (NULL == pRoot)
		return 0;
	int left = BinTreeSize(pRoot->_pLeft);
	int right = BinTreeSize(pRoot->_pRight);
	return left + right + 1;
}
//求二叉樹葉子節點的個數
int BinTreeLeaf(PNode pRoot){
	if (NULL == pRoot)
		return 0; //不用遞迴到空的那一次 
	if ((NULL == pRoot->_pLeft) && (NULL == pRoot->_pRight))
		return 1;
	return BinTreeLeaf(pRoot->_pLeft) + BinTreeLeaf(pRoot->_pRight);
}
//求二叉樹第k層節點的個數
int BinTreekLevelNode(PNode pRoot, int k){
	if (NULL == pRoot || k <= 0)
		return 0;
	if (1 == k)
		return 1;
	return BinTreekLevelNode(pRoot->_pLeft, k - 1) + BinTreekLevelNode(pRoot->_pRight, k - 1);
}
求二叉樹的高度
int BinTreeHeight(PNode pRoot){
	int left = 0;
	int right = 0;
	if (NULL == pRoot)
		return 0;
	if (NULL == pRoot->_pLeft&&NULL == pRoot->_pRight)
		return 1;
	left = BinTreeHeight(pRoot->_pLeft);
	right = BinTreeHeight(pRoot->_pRight);
	return left > right ? (left + 1) : (right + 1);
}
int IsNodeInBinTree(PNode pRoot, PNode Node){
	if (NULL == pRoot || NULL == Node)
		return 0;
	if (pRoot == Node)
		return 1;
	if (IsNodeInBinTree(pRoot->_pLeft, Node))
		return 1;
	return IsNodeInBinTree(pRoot->_pRight, Node);
}
PNode Find(PNode pRoot, DataType data){
	PNode Node = NULL;
	if (NULL == pRoot)
		return NULL;
	if (data == pRoot->_data)
		return pRoot;
	if (Node == Find(pRoot->_pLeft, data))
		return Node;
	return Find(pRoot->_pRight, data);
}

test.c

# include"Tree.h"
void Test1(){
	char *arr = "ABD###CE##F";
	PNode pRoot = NULL;
	PNode pNewRoot = NULL;
	int len = strlen(arr);
	CreateBinTree(&pRoot, arr, len, '#');
	pNewRoot = CopyBinTree(pRoot);
	PreOrder(pRoot);
	PreOrder(pNewRoot);
}
void Test2(){
	char arr[] = "ABD###CE##F";
	PNode pRoot = NULL;
	PNode pNewRoot = NULL;
	int len = strlen(arr);
	CreateBinTree(&pRoot, arr, len, '#');
	pNewRoot = CopyBinTree(pRoot);
	InOrer(pRoot); InOrer(pNewRoot);
}
void Test3(){
	char arr[] = "ABD###CE##F";
	PNode pRoot = NULL;
	PNode pNewRoot = NULL;
	int len = strlen(arr);
	CreateBinTree(&pRoot, arr, len, '#');
	pNewRoot = CopyBinTree(pRoot);
	PostOrder(pRoot);
	PostOrder(pNewRoot);
}
void test4(){
	PNode pRoot = NULL;
	PNode Node = Find(PreOrder, 'E');
	if (IsNodeInBinTree(pRoot, Node))
		printf("在");
	else  printf("不在");
}int main(){
	//Test1(); 
	//Test2(); 
	Test3(); 
	system("pause");
	return 0;
}


 

結果: