MSE(均方誤差)、RMSE (均方根誤差)、MAE (平均絕對誤差)
阿新 • • 發佈:2020-09-22
MSE(均方誤差)、RMSE (均方根誤差)、MAE (平均絕對誤差)
1、MSE(均方誤差)(Mean Square Error)
MSE是真實值與預測值的差值的平方然後求和平均。
範圍[0,+∞),當預測值與真實值完全相同時為0,誤差越大,該值越大。
import numpy as np from sklearn import metrics y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0]) y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0]) print(metrics.mean_squared_error(y_true, y_pred)) # 8.107142857142858
2、
RMSE (均方根誤差)(Root Mean Square Error)
import numpy as np from sklearn import metrics y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0]) y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0]) print(np.sqrt(metrics.mean_squared_error(y_true, y_pred)))
3、MAE (平均絕對誤差)(Mean Absolute Error)
import numpy as np from sklearn import metrics y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0]) y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0]) print(metrics.mean_absolute_error(y_true, y_pred))