1. 程式人生 > 程式設計 >簡單易懂Pytorch實戰例項VGG深度網路

簡單易懂Pytorch實戰例項VGG深度網路

簡單易懂Pytorch實戰例項VGG深度網路

模型VGG,資料集cifar。對照這份程式碼走一遍,大概就知道整個pytorch的執行機制。
來源
定義模型:

'''VGG11/13/16/19 in Pytorch.'''
import torch
import torch.nn as nn
from torch.autograd import Variable


cfg = {
'VGG11': [64,'M',128,256,512,'M'],
'VGG13': [64,64,
'VGG16': [64,
'VGG19': [64,
}

# 模型需繼承nn.Module
class VGG(nn.Module):

# 初始化引數:
def __init__(self,vgg_name):
super(VGG,self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(512,10)

# 模型計算時的前向過程,也就是按照這個過程進行計算
def forward(self,x):
out = self.features(x)
out = out.view(out.size(0),-1)
out = self.classifier(out)
return out

def _make_layers(self,cfg):

layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2,stride=2)]
else:
layers += [nn.Conv2d(in_channels,x,kernel_size=3,padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1,stride=1)]
return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size())

定義訓練過程:

'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

import torchvision
import torchvision.transforms as transforms

import os
import argparse

from models import *
from utils import progress_bar
from torch.autograd import Variable

# 獲取引數
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr',default=0.1,type=float,help='learning rate')
parser.add_argument('--resume','-r',action='store_true',help='resume from checkpoint')
args = parser.parse_args()

use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch

# 獲取資料集,並先進行預處理
print('==> Preparing data..')
# 影象預處理和增強
transform_train = transforms.Compose([
transforms.RandomCrop(32,padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010)),
])

transform_test = transforms.Compose([
transforms.ToTensor(),
])

trainset = torchvision.datasets.CIFAR10(root='./data',train=True,download=True,transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,batch_size=128,shuffle=True,num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data',train=False,transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,batch_size=100,shuffle=False,num_workers=2)

classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck')

# 繼續訓練模型或新建一個模型
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'),'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
net = VGG('VGG16')
# net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()

# 如果GPU可用,使用GPU
if use_cuda:
# move param and buffer to GPU
net.cuda()
# parallel use GPU
net = torch.nn.DataParallel(net,device_ids=range(torch.cuda.device_count()-1))
# speed up slightly
cudnn.benchmark = True


# 定義度量和優化
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=args.lr,momentum=0.9,weight_decay=5e-4)

# 訓練階段
def train(epoch):
print('\nEpoch: %d' % epoch)
# switch to train mode
net.train()
train_loss = 0
correct = 0
total = 0
# batch 資料
for batch_idx,(inputs,targets) in enumerate(trainloader):
# 將資料移到GPU上
if use_cuda:
inputs,targets = inputs.cuda(),targets.cuda()
# 先將optimizer梯度先置為0
optimizer.zero_grad()
# Variable表示該變數屬於計算圖的一部分,此處是圖計算的開始處。圖的leaf variable
inputs,targets = Variable(inputs),Variable(targets)
# 模型輸出
outputs = net(inputs)
# 計算loss,圖的終點處
loss = criterion(outputs,targets)
# 反向傳播,計算梯度
loss.backward()
# 更新引數
optimizer.step()
# 注意如果你想統計loss,切勿直接使用loss相加,而是使用loss.data[0]。因為loss是計算圖的一部分,如果你直接加loss,代表total loss同樣屬於模型一部分,那麼圖就越來越大
train_loss += loss.data[0]
# 資料統計
_,predicted = torch.max(outputs.data,1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()

progress_bar(batch_idx,len(trainloader),'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1),100.*correct/total,correct,total))

# 測試階段
def test(epoch):
global best_acc
# 先切到測試模型
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx,targets) in enumerate(testloader):
if use_cuda:
inputs,targets.cuda()
inputs,targets = Variable(inputs,volatile=True),Variable(targets)
outputs = net(inputs)
loss = criterion(outputs,targets)
# loss is variable,if add it(+=loss) directly,there will be a bigger ang bigger graph.
test_loss += loss.data[0]
_,len(testloader),'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1),total))

# Save checkpoint.
# 儲存模型
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state,'./checkpoint/ckpt.t7')
best_acc = acc

# 執行模型
for epoch in range(start_epoch,start_epoch+200):
train(epoch)
test(epoch)
# 清除部分無用變數
torch.cuda.empty_cache()


執行:

新模型:
python main.py --lr=0.01
舊模型繼續訓練:
python main.py --resume --lr=0.01

一些utility:

'''Some helper functions for PyTorch,including:
- get_mean_and_std: calculate the mean and std value of dataset.
- msr_init: net parameter initialization.
- progress_bar: progress bar mimic xlua.progress.
'''
import os
import sys
import time
import math

import torch.nn as nn
import torch.nn.init as init


def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset,batch_size=1,num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs,targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean,std

def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m,nn.Conv2d):
init.kaiming_normal(m.weight,mode='fan_out')
if m.bias:
init.constant(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
init.constant(m.weight,1)
init.constant(m.bias,nn.Linear):
init.normal(m.weight,std=1e-3)
if m.bias:
init.constant(m.bias,0)


_,term_width = os.popen('stty size','r').read().split()
term_width = int(term_width)

TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current,total,msg=None):
global last_time,begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.

cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1

sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')

cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time

L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)

msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')

# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1,total))

if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()

def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)

f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支援我們。