CCS - Analog Modulation - Amplitude Modulation (AM) - Demodulation of AM Signals - SSB-AM Demodulation
Demodulation of AM Signals
Demodulation is the process of extracting the message signal from the modulated signal.
The demodulation process depends on the type of modulation employed. For
DSB-AM and SSB-AM, the demodulation method is coherent demodulation, which
requires the existence of a signal with the same frequency and phase of the carrier at
the receiver. For conventional AM, envelope detectors are used for demodulation. In
this case precise knowledge of the frequency and the phase of the carrier at the receiver
is not crucial, so the demodulation process is much easier. Coherent demodulation for
DSB-AM and SSB-AM consists of multiplying (mixing) the modulated signal by a sinusoidal
with the same frequency and phase of the carrier and then passing the product
through a lowpass filter. The oscillator that generates the required sinusoidal at the
receiver is called the local oscillator.
SSB-AM Demodulation
Matlab Coding
1 % MATLAB script for Illustrative Problem 3.7. 2 % Demonstration script for LSSB-AM demodulation. The message signal 3 % is +1 for 0 < t < t0/3, -2 for t0/3 < t < 2t0/3, and zero otherwise. 4 echo on 5 t0=.15; % signal duration6 ts=1/1500; % sampling interval 7 fc=250; % carrier frequency 8 fs=1/ts; % sampling frequency 9 df=0.25; % desired freq.resolution 10 t=[0:ts:t0]; % time vector
11 % the message vector 12 m=[ones(1,t0/(3*ts)),-2*ones(1,t0/(3*ts)),zeros(1,t0/(3*ts)+1)]; 13 c=cos(2*pi*fc.*t); % carrier vector 14 udsb=m.*c; % DSB modulated signal 15 [UDSB,udsb,df1]=fftseq(udsb,ts,df); % Fourier transform 16 UDSB=UDSB/fs; % scaling 17 n2=ceil(fc/df1); % location of carrier in freq. vector
18 % Remove the upper sideband from DSB. 19 UDSB(n2:length(UDSB)-n2)=zeros(size(UDSB(n2:length(UDSB)-n2))); 20 ULSSB=UDSB; % Generate LSSB-AM spectrum. 21 [M,m,df1]=fftseq(m,ts,df); % spectrum of the message signal 22 M=M/fs; % scaling 23 f=[0:df1:df1*(length(M)-1)]-fs/2; % frequency vector 24 u=real(ifft(ULSSB))*fs; % Generate LSSB signal from spectrum.
25 % mixing 26 y=u.*cos(2*pi*fc*[0:ts:ts*(length(u)-1)]); 27 [Y,y,df1]=fftseq(y,ts,df); % spectrum of the output of the mixer 28 Y=Y/fs; % scaling 29 f_cutoff=150; % Choose the cutoff freq. of the filter. 30 n_cutoff=floor(150/df); % Design the filter. 31 H=zeros(size(f)); 32 H(1:n_cutoff)=4*ones(1,n_cutoff);
33 % spectrum of the filter output 34 H(length(f)-n_cutoff+1:length(f))=4*ones(1,n_cutoff); 35 DEM=H.*Y; % spectrum of the filter output 36 dem=real(ifft(DEM))*fs; % filter output
37 pause % Press a key to see the effect of mixing. 38 clf 39 subplot(3,1,1) 40 plot(f,fftshift(abs(M))) 41 title('Spectrum of the Message Signal') 42 xlabel('Frequency') 43 subplot(3,1,2) 44 plot(f,fftshift(abs(ULSSB))) 45 title('Spectrum of the Modulated Signal') 46 xlabel('Frequency') 47 subplot(3,1,3) 48 plot(f,fftshift(abs(Y))) 49 title('Spectrum of the Mixer Output') 50 xlabel('Frequency') 51 pause % Press a key to see the effect of filtering on the mixer output. 52 clf 53 subplot(3,1,1) 54 plot(f,fftshift(abs(Y))) 55 title('Spectrum of the Mixer Output') 56 xlabel('Frequency') 57 subplot(3,1,2) 58 plot(f,fftshift(abs(H))) 59 title('Lowpass Filter Characteristics') 60 xlabel('Frequency') 61 subplot(3,1,3) 62 plot(f,fftshift(abs(DEM))) 63 title('Spectrum of the Demodulator output') 64 xlabel('Frequency') 65 pause % Press a key to see the message and the demodulator output signals. 66 subplot(2,1,1) 67 plot(t,m(1:length(t))) 68 title('The Message Signal') 69 xlabel('Time') 70 subplot(2,1,2) 71 plot(t,dem(1:length(t))) 72 title('The Demodulator Output') 73 xlabel('Time')
The effect of mixing
The effect of filtering on the mixer output
The message and the demodulator output signals
Reference,
1.<<Contemporary Communication System using MATLAB>> -John G. Proakis