1. 程式人生 > 程式設計 >使用PyTorch實現MNIST手寫體識別程式碼

使用PyTorch實現MNIST手寫體識別程式碼

實驗環境

win10 + anaconda + jupyter notebook

Pytorch1.1.0

Python3.7

gpu環境(可選)

MNIST資料集介紹

MNIST 包括6萬張28x28的訓練樣本,1萬張測試樣本,可以說是CV裡的“Hello Word”。本文使用的CNN網路將MNIST資料的識別率提高到了99%。下面我們就開始進行實戰。

匯入包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms
torch.__version__

定義超引數

BATCH_SIZE=512
EPOCHS=20 
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

資料集

我們直接使用PyTorch中自帶的dataset,並使用DataLoader對訓練資料和測試資料分別進行讀取。如果下載過資料集這裡download可選擇False

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data',train=True,download=True,transform=transforms.Compose([
              transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))
            ])),batch_size=BATCH_SIZE,shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data',train=False,shuffle=True)

定義網路

該網路包括兩個卷積層和兩個線性層,最後輸出10個維度,即代表0-9十個數字。

class ConvNet(nn.Module):
  def __init__(self):
    super().__init__()
    self.conv1=nn.Conv2d(1,10,5) # input:(1,28,28) output:(10,24,24) 
    self.conv2=nn.Conv2d(10,20,3) # input:(10,12,12) output:(20,10)
    self.fc1 = nn.Linear(20*10*10,500)
    self.fc2 = nn.Linear(500,10)
  def forward(self,x):
    in_size = x.size(0)
    out = self.conv1(x)
    out = F.relu(out)
    out = F.max_pool2d(out,2,2) 
    out = self.conv2(out)
    out = F.relu(out)
    out = out.view(in_size,-1)
    out = self.fc1(out)
    out = F.relu(out)
    out = self.fc2(out)
    out = F.log_softmax(out,dim=1)
    return out

例項化網路

model = ConvNet().to(DEVICE) # 將網路移動到gpu上
optimizer = optim.Adam(model.parameters()) # 使用Adam優化器

定義訓練函式

def train(model,device,train_loader,optimizer,epoch):
  model.train()
  for batch_idx,(data,target) in enumerate(train_loader):
    data,target = data.to(device),target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output,target)
    loss.backward()
    optimizer.step()
    if(batch_idx+1)%30 == 0: 
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch,batch_idx * len(data),len(train_loader.dataset),100. * batch_idx / len(train_loader),loss.item()))

定義測試函式

def test(model,test_loader):
  model.eval()
  test_loss = 0
  correct = 0
  with torch.no_grad():
    for data,target in test_loader:
      data,target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output,target,reduction='sum').item() # 將一批的損失相加
      pred = output.max(1,keepdim=True)[1] # 找到概率最大的下標
      correct += pred.eq(target.view_as(pred)).sum().item()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f},Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss,correct,len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

開始訓練

for epoch in range(1,EPOCHS + 1):
  train(model,DEVICE,epoch)
  test(model,test_loader)

實驗結果

Train Epoch: 1 [14848/60000 (25%)]	Loss: 0.375058
Train Epoch: 1 [30208/60000 (50%)]	Loss: 0.255248
Train Epoch: 1 [45568/60000 (75%)]	Loss: 0.128060

Test set: Average loss: 0.0992,Accuracy: 9690/10000 (97%)

Train Epoch: 2 [14848/60000 (25%)]	Loss: 0.093066
Train Epoch: 2 [30208/60000 (50%)]	Loss: 0.087888
Train Epoch: 2 [45568/60000 (75%)]	Loss: 0.068078

Test set: Average loss: 0.0599,Accuracy: 9816/10000 (98%)

Train Epoch: 3 [14848/60000 (25%)]	Loss: 0.043926
Train Epoch: 3 [30208/60000 (50%)]	Loss: 0.037321
Train Epoch: 3 [45568/60000 (75%)]	Loss: 0.068404

Test set: Average loss: 0.0416,Accuracy: 9859/10000 (99%)

Train Epoch: 4 [14848/60000 (25%)]	Loss: 0.031654
Train Epoch: 4 [30208/60000 (50%)]	Loss: 0.041341
Train Epoch: 4 [45568/60000 (75%)]	Loss: 0.036493

Test set: Average loss: 0.0361,Accuracy: 9873/10000 (99%)

Train Epoch: 5 [14848/60000 (25%)]	Loss: 0.027688
Train Epoch: 5 [30208/60000 (50%)]	Loss: 0.019488
Train Epoch: 5 [45568/60000 (75%)]	Loss: 0.018023

Test set: Average loss: 0.0344,Accuracy: 9875/10000 (99%)

Train Epoch: 6 [14848/60000 (25%)]	Loss: 0.024212
Train Epoch: 6 [30208/60000 (50%)]	Loss: 0.018689
Train Epoch: 6 [45568/60000 (75%)]	Loss: 0.040412

Test set: Average loss: 0.0350,Accuracy: 9879/10000 (99%)

Train Epoch: 7 [14848/60000 (25%)]	Loss: 0.030426
Train Epoch: 7 [30208/60000 (50%)]	Loss: 0.026939
Train Epoch: 7 [45568/60000 (75%)]	Loss: 0.010722

Test set: Average loss: 0.0287,Accuracy: 9892/10000 (99%)

Train Epoch: 8 [14848/60000 (25%)]	Loss: 0.021109
Train Epoch: 8 [30208/60000 (50%)]	Loss: 0.034845
Train Epoch: 8 [45568/60000 (75%)]	Loss: 0.011223

Test set: Average loss: 0.0299,Accuracy: 9904/10000 (99%)

Train Epoch: 9 [14848/60000 (25%)]	Loss: 0.011391
Train Epoch: 9 [30208/60000 (50%)]	Loss: 0.008091
Train Epoch: 9 [45568/60000 (75%)]	Loss: 0.039870

Test set: Average loss: 0.0341,Accuracy: 9890/10000 (99%)

Train Epoch: 10 [14848/60000 (25%)]	Loss: 0.026813
Train Epoch: 10 [30208/60000 (50%)]	Loss: 0.011159
Train Epoch: 10 [45568/60000 (75%)]	Loss: 0.024884

Test set: Average loss: 0.0286,Accuracy: 9901/10000 (99%)

Train Epoch: 11 [14848/60000 (25%)]	Loss: 0.006420
Train Epoch: 11 [30208/60000 (50%)]	Loss: 0.003641
Train Epoch: 11 [45568/60000 (75%)]	Loss: 0.003402

Test set: Average loss: 0.0377,Accuracy: 9894/10000 (99%)

Train Epoch: 12 [14848/60000 (25%)]	Loss: 0.006866
Train Epoch: 12 [30208/60000 (50%)]	Loss: 0.012617
Train Epoch: 12 [45568/60000 (75%)]	Loss: 0.008548

Test set: Average loss: 0.0311,Accuracy: 9908/10000 (99%)

Train Epoch: 13 [14848/60000 (25%)]	Loss: 0.010539
Train Epoch: 13 [30208/60000 (50%)]	Loss: 0.002952
Train Epoch: 13 [45568/60000 (75%)]	Loss: 0.002313

Test set: Average loss: 0.0293,Accuracy: 9905/10000 (99%)

Train Epoch: 14 [14848/60000 (25%)]	Loss: 0.002100
Train Epoch: 14 [30208/60000 (50%)]	Loss: 0.000779
Train Epoch: 14 [45568/60000 (75%)]	Loss: 0.005952

Test set: Average loss: 0.0335,Accuracy: 9897/10000 (99%)

Train Epoch: 15 [14848/60000 (25%)]	Loss: 0.006053
Train Epoch: 15 [30208/60000 (50%)]	Loss: 0.002559
Train Epoch: 15 [45568/60000 (75%)]	Loss: 0.002555

Test set: Average loss: 0.0357,Accuracy: 9894/10000 (99%)

Train Epoch: 16 [14848/60000 (25%)]	Loss: 0.000895
Train Epoch: 16 [30208/60000 (50%)]	Loss: 0.004923
Train Epoch: 16 [45568/60000 (75%)]	Loss: 0.002339

Test set: Average loss: 0.0400,Accuracy: 9893/10000 (99%)

Train Epoch: 17 [14848/60000 (25%)]	Loss: 0.004136
Train Epoch: 17 [30208/60000 (50%)]	Loss: 0.000927
Train Epoch: 17 [45568/60000 (75%)]	Loss: 0.002084

Test set: Average loss: 0.0353,Accuracy: 9895/10000 (99%)

Train Epoch: 18 [14848/60000 (25%)]	Loss: 0.004508
Train Epoch: 18 [30208/60000 (50%)]	Loss: 0.001272
Train Epoch: 18 [45568/60000 (75%)]	Loss: 0.000543

Test set: Average loss: 0.0380,Accuracy: 9894/10000 (99%)

Train Epoch: 19 [14848/60000 (25%)]	Loss: 0.001699
Train Epoch: 19 [30208/60000 (50%)]	Loss: 0.000661
Train Epoch: 19 [45568/60000 (75%)]	Loss: 0.000275

Test set: Average loss: 0.0339,Accuracy: 9905/10000 (99%)

Train Epoch: 20 [14848/60000 (25%)]	Loss: 0.000441
Train Epoch: 20 [30208/60000 (50%)]	Loss: 0.000695
Train Epoch: 20 [45568/60000 (75%)]	Loss: 0.000467

Test set: Average loss: 0.0396,Accuracy: 9894/10000 (99%)

總結

一個實際專案的工作流程:找到資料集,對資料做預處理,定義我們的模型,調整超引數,測試訓練,再通過訓練結果對超引數進行調整或者對模型進行調整。

以上這篇使用PyTorch實現MNIST手寫體識別程式碼就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。