Ray - Fast and Simple Distributed Computing
Ray
https://ray.io/
https://github.com/ray-project/ray
(1)機器學習生態基於python語言,但是python具有全域性直譯器鎖缺點,限制了對單臺機器的多核的利用
(2)同時查大規模模型的資料的出現,需要依賴叢集來解決類似問題,引入了分散式機器學習的需求,
但是不需要引入更加高層的應用(spark)的基礎上,ray基於python生態,單程的簡單的分散式計算框架。
ray同時也包括了機器學習應用。
Ray provides a simple, universal API for building distributed applications.
Ray is packaged with the following libraries for accelerating machine learning workloads:
https://docs.ray.io/en/latest/index.html
Ray provides a simple, universal API for building distributed applications.
Ray accomplishes this mission by:
Providing simple primitives for building and running distributed applications.
Enabling end users to parallelize single machine code, with little to zero code changes.
Including a large ecosystem of applications, libraries, and tools on top of the core Ray to enable complex applications.
https://www.ctolib.com/topics-138457.html
傳統程式設計依賴於兩個核心概念:函式和類。使用這些構建塊就可以構建出無數的應用程式。
但是,當我們將應用程式遷移到分散式環境時,這些概念通常會發生變化。
一方面,OpenMPI、Python 多程序和 ZeroMQ 等工具提供了用於傳送和接收訊息的低階原語。這些工具非常強大,但它們提供了不同的抽象,因此要使用它們就必須從頭開始重寫單執行緒應用程式。
另一方面,我們也有一些特定領域的工具,例如用於模型訓練的 TensorFlow、用於資料處理且支援 SQL 的 Spark,以及用於流式處理的 Flink。這些工具提供了更高級別的抽象,如神經網路、資料集和流。但是,因為它們與用於序列程式設計的抽象不同,所以要使用它們也必須從頭開始重寫應用程式。
用於分散式計算的工具
Ray 佔據了一個獨特的中間地帶。它並沒有引入新的概念,而是採用了函式和類的概念,並將它們轉換為分散式的任務和 actor。Ray 可以在不做出重大修改的情況下對序列應用程式進行並行化。
來源(論文)
https://arxiv.org/abs/1703.03924
Real-Time Machine Learning: The Missing Pieces
Machine learning applications are increasingly deployed not only to serve predictions using static models, but also as tightly-integrated components of feedback loops involving dynamic, real-time decision making. These applications pose a new set of requirements, none of which are difficult to achieve in isolation, but the combination of which creates a challenge for existing distributed execution frameworks: computation with millisecond latency at high throughput, adaptive construction of arbitrary task graphs, and execution of heterogeneous kernels over diverse sets of resources. We assert that a new distributed execution framework is needed for such ML applications and propose a candidate approach with a proof-of-concept architecture that achieves a 63x performance improvement over a state-of-the-art execution framework for a representative application.
架構
https://www.cnblogs.com/fanzhidongyzby/p/7901139.html
論文給出的架構圖裡並未畫出Driver的概念,因此我在其基礎上做了一些修改和擴充。
Ray的Driver節點和和Slave節點啟動的元件幾乎相同,不過卻有以下區別:
- Driver上的工作程序DriverProcess一般只有一個,即使用者啟動的PythonShell。Slave可以根據需要建立多個WorkerProcess。
- Driver只能提交任務,卻不能接收來自全域性排程器分配的任務。Slave可以提交任務,也可以接收全域性排程器分配的任務。
- Driver可以主動繞過全域性排程器給Slave傳送Actor呼叫任務(此處設計是否合理尚不討論)。Slave只能接收全域性排程器分配的計算任務。
https://zhuanlan.zhihu.com/p/41875076
其中的原理是將程式碼序列化到 redis 上儲存為 object (object 可以理解為高效的不可變物件和資料共享),實現各種非同步執行和資料交換,優先在本地節點完成任務,如果完不成再由global scheduler 調配到其它節點(更正補充)。
DEMO CODE
單機版本,分散式任務示例。
remote宣告函式為一個任務。
remote呼叫會將任務分發到一個計算程序中,並執行。
import ray ray.init() @ray.remote def f(x): return x * x futures = [f.remote(i) for i in range(4)] print(ray.get(futures))
聚類學習工作流改造
https://github.com/fanqingsong/machine_learning_workflow_on_ray
from csv import reader from sklearn.cluster import KMeans import joblib import ray ray.init() # Load a CSV file def load_csv(filename): file = open(filename, "rt") lines = reader(file) dataset = list(lines) return dataset # Convert string column to float def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) # Convert string column to integer def str_column_to_int(dataset, column): class_values = [row[column] for row in dataset] unique = set(class_values) lookup = dict() for i, value in enumerate(unique): lookup[value] = i for row in dataset: row[column] = lookup[row[column]] return lookup def getRawIrisData(): # Load iris dataset filename = 'iris.csv' dataset = load_csv(filename) print('Loaded data file {0} with {1} rows and {2} columns'.format(filename, len(dataset), len(dataset[0]))) print(dataset[0]) # convert string columns to float for i in range(4): str_column_to_float(dataset, i) # convert class column to int lookup = str_column_to_int(dataset, 4) print(dataset[0]) print(lookup) return dataset @ray.remote def getTrainData(): dataset = getRawIrisData() trainData = [ [one[0], one[1], one[2], one[3]] for one in dataset ] return trainData @ray.remote def getNumClusters(): return 3 @ray.remote def train(numClusters, trainData): print("numClusters=%d" % numClusters) model = KMeans(n_clusters=numClusters) model.fit(trainData) # save model for prediction joblib.dump(model, 'model.kmeans') return trainData @ray.remote def predict(irisData): # test saved prediction model = joblib.load('model.kmeans') # cluster result labels = model.predict(irisData) print("cluster result") print(labels) def machine_learning_workflow_pipeline(): trainData = getTrainData.remote() numClusters = getNumClusters.remote() trainData = train.remote(numClusters, trainData) result = predict.remote(trainData) result = ray.get(result) print("result=", result) if __name__ == "__main__": machine_learning_workflow_pipeline()
Ray 破冰學習
https://github.com/anyscale/academy/blob/master/ray-crash-course/00-Ray-Crash-Course-Overview.ipynb