CNN神經網路-人臉識別-python3.x-tensorflow
阿新 • • 發佈:2020-11-21
本週被教師留了CNN作業,沒有任何資料,便自學,留此筆記
PS:
主要程式碼來自於https://www.cnblogs.com/mu---mu/p/FaceRecognition-tensorflow.html
執行環境:
pip install tensorflow
pip install numpy
pip install dlib
pip install opencv-python
本人照片集
通過攝像頭拍攝照片採集本人照片集,原始碼使用10000張照片作為樣本,由於個人電腦限制,只採取了800張作為樣本集
檔案:get_my_faces.py
dlib版
import cv2 import dlib import os import sys import random output_dir = './my_faces' size = 64 if not os.path.exists(output_dir): os.makedirs(output_dir) # 改變圖片的亮度與對比度 def relight(img, light=1, bias=0): w = img.shape[1] h = img.shape[0] #image = [] for i in range(0,w): for j in range(0,h): for c in range(3): tmp = int(img[j,i,c]*light + bias) if tmp > 255: tmp = 255 elif tmp < 0: tmp = 0 img[j,i,c] = tmp return img #使用dlib自帶的frontal_face_detector作為我們的特徵提取器 detector = dlib.get_frontal_face_detector() # 開啟攝像頭 引數為輸入流,可以為攝像頭或視訊檔案 camera = cv2.VideoCapture(0) index = 1 while True: if (index <= 10000): print('Being processed picture %s' % index) # 從攝像頭讀取照片 success, img = camera.read() # 轉為灰度圖片 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用detector進行人臉檢測 dets = detector(gray_img, 1) for i, d in enumerate(dets): x1 = d.top() if d.top() > 0 else 0 y1 = d.bottom() if d.bottom() > 0 else 0 x2 = d.left() if d.left() > 0 else 0 y2 = d.right() if d.right() > 0 else 0 face = img[x1:y1,x2:y2] # 調整圖片的對比度與亮度, 對比度與亮度值都取隨機數,這樣能增加樣本的多樣性 face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50)) face = cv2.resize(face, (size,size)) cv2.imshow('image', face) cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face) index += 1 key = cv2.waitKey(30) & 0xff if key == 27: break else: print('Finished!') break
opencv版
import cv2 import os import sys import random out_dir = './my_faces' if not os.path.exists(out_dir): os.makedirs(out_dir) # 改變亮度與對比度 def relight(img, alpha=1, bias=0): w = img.shape[1] h = img.shape[0] #image = [] for i in range(0,w): for j in range(0,h): for c in range(3): tmp = int(img[j,i,c]*alpha + bias) if tmp > 255: tmp = 255 elif tmp < 0: tmp = 0 img[j,i,c] = tmp return img # 獲取分類器 haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 開啟攝像頭 引數為輸入流,可以為攝像頭或視訊檔案 camera = cv2.VideoCapture(0) n = 1 while 1: if (n <= 10000): print('It`s processing %s image.' % n) # 讀幀 success, img = camera.read() gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = haar.detectMultiScale(gray_img, 1.3, 5) for f_x, f_y, f_w, f_h in faces: face = img[f_y:f_y+f_h, f_x:f_x+f_w] face = cv2.resize(face, (64,64)) ''' if n % 3 == 1: face = relight(face, 1, 50) elif n % 3 == 2: face = relight(face, 0.5, 0) ''' face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50)) cv2.imshow('img', face) cv2.imwrite(out_dir+'/'+str(n)+'.jpg', face) n+=1 key = cv2.waitKey(30) & 0xff if key == 27: break else: break
他人圖片集
收集他人面容圖片,放入專案目錄/input_img目錄下
檔案:set_other_people.py
# -*- codeing: utf-8 -*- import sys import os import cv2 import dlib input_dir = './input_img' output_dir = './other_faces' size = 64 if not os.path.exists(output_dir): os.makedirs(output_dir) #使用dlib自帶的frontal_face_detector作為我們的特徵提取器 detector = dlib.get_frontal_face_detector() index = 1 for (path, dirnames, filenames) in os.walk(input_dir): for filename in filenames: if filename.endswith('.jpg'): print('Being processed picture %s' % index) img_path = path+'/'+filename # 從檔案讀取圖片 img = cv2.imread(img_path) # 轉為灰度圖片 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用detector進行人臉檢測 dets為返回的結果 dets = detector(gray_img, 1) #使用enumerate 函式遍歷序列中的元素以及它們的下標 #下標i即為人臉序號 #left:人臉左邊距離圖片左邊界的距離 ;right:人臉右邊距離圖片左邊界的距離 #top:人臉上邊距離圖片上邊界的距離 ;bottom:人臉下邊距離圖片上邊界的距離 for i, d in enumerate(dets): x1 = d.top() if d.top() > 0 else 0 y1 = d.bottom() if d.bottom() > 0 else 0 x2 = d.left() if d.left() > 0 else 0 y2 = d.right() if d.right() > 0 else 0 # img[y:y+h,x:x+w] face = img[x1:y1,x2:y2] # 調整圖片的尺寸 face = cv2.resize(face, (size,size)) cv2.imshow('image',face) # 儲存圖片 cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face) index += 1 key = cv2.waitKey(30) & 0xff if key == 27: sys.exit(0)
訓練模型
檔案:train_faces.py
import tensorflow as tf
import cv2
import numpy as np
import os
import random
import sys
from sklearn.model_selection import train_test_split
my_faces_path = './my_faces'
other_faces_path = './other_faces'
size = 64
imgs = []
labs = []
def getPaddingSize(img):
h, w, _ = img.shape
top, bottom, left, right = (0,0,0,0)
longest = max(h, w)
if w < longest:
tmp = longest - w
# //表示整除符號
left = tmp // 2
right = tmp - left
elif h < longest:
tmp = longest - h
top = tmp // 2
bottom = tmp - top
else:
pass
return top, bottom, left, right
def readData(path , h=size, w=size):
for filename in os.listdir(path):
if filename.endswith('.jpg'):
filename = path + '/' + filename
img = cv2.imread(filename)
top,bottom,left,right = getPaddingSize(img)
# 將圖片放大, 擴充圖片邊緣部分
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0])
img = cv2.resize(img, (h, w))
imgs.append(img)
labs.append(path)
readData(my_faces_path)
readData(other_faces_path)
# 將圖片資料與標籤轉換成陣列
imgs = np.array(imgs)
labs = np.array([[0,1] if lab == my_faces_path else [1,0] for lab in labs])
# 隨機劃分測試集與訓練集
train_x,test_x,train_y,test_y = train_test_split(imgs, labs, test_size=0.05, random_state=random.randint(0,100))
# 引數:圖片資料的總數,圖片的高、寬、通道
train_x = train_x.reshape(train_x.shape[0], size, size, 3)
test_x = test_x.reshape(test_x.shape[0], size, size, 3)
# 將資料轉換成小於1的數
train_x = train_x.astype('float32')/255.0
test_x = test_x.astype('float32')/255.0
print('train size:%s, test size:%s' % (len(train_x), len(test_x)))
# 圖片塊,每次取100張圖片
batch_size = 100
num_batch = len(train_x) // batch_size
x = tf.placeholder(tf.float32, [None, size, size, 3])
y_ = tf.placeholder(tf.float32, [None, 2])
keep_prob_5 = tf.placeholder(tf.float32)
keep_prob_75 = tf.placeholder(tf.float32)
def weightVariable(shape):
init = tf.random_normal(shape, stddev=0.01)
return tf.Variable(init)
def biasVariable(shape):
init = tf.random_normal(shape)
return tf.Variable(init)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def maxPool(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def dropout(x, keep):
return tf.nn.dropout(x, keep)
def cnnLayer():
# 第一層
W1 = weightVariable([3,3,3,32]) # 卷積核大小(3,3), 輸入通道(3), 輸出通道(32)
b1 = biasVariable([32])
# 卷積
conv1 = tf.nn.relu(conv2d(x, W1) + b1)
# 池化
pool1 = maxPool(conv1)
# 減少過擬合,隨機讓某些權重不更新
drop1 = dropout(pool1, keep_prob_5)
# 第二層
W2 = weightVariable([3,3,32,64])
b2 = biasVariable([64])
conv2 = tf.nn.relu(conv2d(drop1, W2) + b2)
pool2 = maxPool(conv2)
drop2 = dropout(pool2, keep_prob_5)
# 第三層
W3 = weightVariable([3,3,64,64])
b3 = biasVariable([64])
conv3 = tf.nn.relu(conv2d(drop2, W3) + b3)
pool3 = maxPool(conv3)
drop3 = dropout(pool3, keep_prob_5)
# 全連線層
Wf = weightVariable([8*16*32, 512])
bf = biasVariable([512])
drop3_flat = tf.reshape(drop3, [-1, 8*16*32])
dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf)
dropf = dropout(dense, keep_prob_75)
# 輸出層
Wout = weightVariable([512,2])
bout = weightVariable([2])
#out = tf.matmul(dropf, Wout) + bout
out = tf.add(tf.matmul(dropf, Wout), bout)
return out
def cnnTrain():
out = cnnLayer()
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_))
train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
# 比較標籤是否相等,再求的所有數的平均值,tf.cast(強制轉換型別)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_, 1)), tf.float32))
# 將loss與accuracy儲存以供tensorboard使用
tf.summary.scalar('loss', cross_entropy)
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
# 資料儲存器的初始化
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter('./tmp', graph=tf.get_default_graph())
for n in range(10):
# 每次取128(batch_size)張圖片
for i in range(num_batch):
batch_x = train_x[i*batch_size : (i+1)*batch_size]
batch_y = train_y[i*batch_size : (i+1)*batch_size]
# 開始訓練資料,同時訓練三個變數,返回三個資料
_,loss,summary = sess.run([train_step, cross_entropy, merged_summary_op],
feed_dict={x:batch_x,y_:batch_y, keep_prob_5:0.5,keep_prob_75:0.75})
summary_writer.add_summary(summary, n*num_batch+i)
# 列印損失
print(n*num_batch+i, loss)
if (n*num_batch+i) % 100 == 0:
# 獲取測試資料的準確率
acc = accuracy.eval({x:test_x, y_:test_y, keep_prob_5:1.0, keep_prob_75:1.0})
print(n*num_batch+i, acc)
# 準確率大於0.98時儲存並退出
if acc > 0.98 and n > 2:
saver.save(sess, './train_faces.model', global_step=n*num_batch+i)
sys.exit(0)
print('accuracy less 0.98, exited!')
cnnTrain()
進行識別
檔案:is_my_face.py
output = cnnLayer()
predict = tf.argmax(output, 1)
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, tf.train.latest_checkpoint('.'))
def is_my_face(image):
res = sess.run(predict, feed_dict={x: [image/255.0], keep_prob_5:1.0, keep_prob_75: 1.0})
if res[0] == 1:
return True
else:
return False
#使用dlib自帶的frontal_face_detector作為我們的特徵提取器
detector = dlib.get_frontal_face_detector()
cam = cv2.VideoCapture(0)
while True:
_, img = cam.read()
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dets = detector(gray_image, 1)
if not len(dets):
#print('Can`t get face.')
cv2.imshow('img', img)
key = cv2.waitKey(30) & 0xff
if key == 27:
sys.exit(0)
for i, d in enumerate(dets):
x1 = d.top() if d.top() > 0 else 0
y1 = d.bottom() if d.bottom() > 0 else 0
x2 = d.left() if d.left() > 0 else 0
y2 = d.right() if d.right() > 0 else 0
face = img[x1:y1,x2:y2]
# 調整圖片的尺寸
face = cv2.resize(face, (size,size))
print('Is this my face? %s' % is_my_face(face))
cv2.rectangle(img, (x2,x1),(y2,y1), (255,0,0),3)
cv2.imshow('image',img)
key = cv2.waitKey(30) & 0xff
if key == 27:
sys.exit(0)
sess.close()