1. 程式人生 > 實用技巧 >numpy 相關統計

numpy 相關統計

1.numpy.amin() 計算最小值

numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])

例子如下:

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [
31, 32, 33, 34, 35]]) #最小值 y = np.amin(x)#11 #每列最小值 y = np.amin(x, axis=0) print(y) # [11 12 13 14 15] #每行最小值 y = np.amin(x, axis=1) print(y) # [11 16 21 26 31]

其實直接使用x.min()也是同樣的效果

print(x.min()) #11
print(x.min(axis=0)) #[11 12 13 14 15]
print(x.min(axis=1)) #[11 16 21 26 31]

最大值也是同樣的用法,就不贅述了

2.計算極差(也就是最大值和最小值的差)

numpy.ptp(a, axis=None, out=None, keepdims=np._NoValue)

例子如下:

import numpy as np

np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]

#極差
print(np.ptp(x))  # 18

#計算每列極差
print(np.ptp(x, axis=0))  #
[ 8 10 10 17 8] #計算每行極差 print(np.ptp(x, axis=1)) # [15 8 17 16]

同理,使用x.ptp()也是OK的

3.計算分位數

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)
  • a:array,用來算分位數的物件,可以是多維的陣列。
  • q:介於0-100的float,用來計算是幾分位的引數,如四分之一位就是25,如要算兩個位置的數就[25,75]。
  • axis:座標軸的方向,一維的就不用考慮了,多維的就用這個調整計算的維度方向,取值範圍0/1
np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]

#如果只求某個分位數,直接使用int,如果是多個,則使用list
print(np.percentile(x, 25))
#2.0

print(np.percentile(x, [25, 50]))  
# [ 2. 10.]

print(np.percentile(x, [25, 50], axis=0))
# [[10.75  1.75  0.75 10.75  9.5 ]
#  [13.5   2.    5.   14.5  13.  ]]

print(np.percentile(x, [25, 50], axis=1))
# [[ 1. 10.  8.  2.]
#  [ 2. 11.  9. 15.]]

4.計算中位數

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

例子

import numpy as np

np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]
print(np.percentile(x, 50))
print(np.median(x))
# 10.0

print(np.percentile(x, 50, axis=0))
print(np.median(x, axis=0))
# [13.5  2.   5.  14.5 13. ]

print(np.percentile(x, 50, axis=1))
print(np.median(x, axis=1))
# [ 2. 11.  9. 15.]

注意:中位數和分位數都不可以使用x.median() 或者是x.percentile()

5.計算均值,沿軸的元素的總和除以元素的數量

numpy.mean(a[, axis=None, dtype=None, out=None, keepdims=np._NoValue)])

例子

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.mean(x)
print(y)  # 23.0

y = np.mean(x, axis=0)
print(y)  # [21. 22. 23. 24. 25.]

y = np.mean(x, axis=1)
print(y)  # [13. 18. 23. 28. 33.]

#是否可以使用x.mean()
print(x.mean())  #23.0

我們驗證一下分母是否會考慮空值

a=np.array([1,2,3,4,5,np.nan])
print(a)
#[ 1.  2.  3.  4.  5. nan] 
print(a.mean())  #nan
print(np.mean(a)) #nan

print(a[:-1].mean())  #3.0

6.計算加權平均值

numpy.average(a[, axis=None, weights=None, returned=False])

meanaverage都是計算均值的函式,在不指定權重的時候averagemean是一樣的。指定權重後,average可以計算加權平均值。

計算加權平均值(將各數值乘以相應的權數,然後加總求和得到總體值,再除以總的單位數。)

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.average(x)
print(y)  # 23.0

y = np.average(x, axis=0)
print(y)  # [21. 22. 23. 24. 25.]

y = np.average(x, axis=1)
print(y)  # [13. 18. 23. 28. 33.]


y = np.arange(1, 26).reshape([5, 5])
print(y)
# [[ 1  2  3  4  5]
#  [ 6  7  8  9 10]
#  [11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]]

z = np.average(x, weights=y)
print(z)  # 27.0

z = np.average(x, axis=0, weights=y)
print(z)
# [25.54545455 26.16666667 26.84615385 27.57142857 28.33333333]

z = np.average(x, axis=1, weights=y)
print(z)
# [13.66666667 18.25       23.15384615 28.11111111 33.08695652]

第一行的均值怎麼的來的:

sum(x[0]*y[0]/y[0].sum()) #13.666666666666668

也就是說分母其實就是y的求和,而mean的分母是個數

7.計算方差

numpy.var(a[, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue])

ddof=0:是“Delta Degrees of Freedom”,表示自由度的個數

要注意方差和樣本方差的無偏估計,方差公式中分母上是n;樣本方差無偏估計公式中分母上是n-1n為樣本個數),證明的連結

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.var(x)
print(y)  # 52.0
y = np.mean((x - np.mean(x)) ** 2)
print(y)  # 52.0

y = np.var(x, ddof=1)
print(y)  # 54.166666666666664
y = np.sum((x - np.mean(x)) ** 2) / (x.size - 1)
print(y)  # 54.166666666666664

y = np.var(x, axis=0)
print(y)  # [50. 50. 50. 50. 50.]

y = np.var(x, axis=1)
print(y)  # [2. 2. 2. 2. 2.]

print(x.var())

8.計算標準差

numpy.std(a[, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue])

標準差是一組資料平均值分散程度的一種度量,是方差的算術平方根

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.std(x)
print(y)  # 7.211102550927978
y = np.sqrt(np.var(x))
print(y)  # 7.211102550927978

y = np.std(x, axis=0)
print(y)
# [7.07106781 7.07106781 7.07106781 7.07106781 7.07106781]

y = np.std(x, axis=1)
print(y)
# [1.41421356 1.41421356 1.41421356 1.41421356 1.41421356]

9.計算協方差矩陣

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,aweights=None)

例子

import numpy as np

x = [1, 2, 3, 4, 6]
y = [0, 2, 5, 6, 7]
print(np.cov(x))  # 3.7   #樣本方差
print(np.cov(y))  # 8.5   #樣本方差
print(np.cov(x, y))
# [[3.7  5.25]
#  [5.25 8.5 ]]

print(np.var(x))  # 2.96    #方差
print(np.var(x, ddof=1))  # 3.7    #樣本方差
print(np.var(y))  # 6.8    #方差
print(np.var(y, ddof=1))  # 8.5    #樣本方差

z = np.mean((x - np.mean(x)) * (y - np.mean(y)))    #協方差
print(z)  # 4.2

z = np.sum((x - np.mean(x)) * (y - np.mean(y))) / (len(x) - 1)   #樣本協方差
print(z)  # 5.25

z = np.dot(x - np.mean(x), y - np.mean(y)) / (len(x) - 1)     #樣本協方差     
print(z)  # 5.25

10.計算相關係數

numpy.corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue)

理解了np.cov()函式之後,很容易理解np.correlate(),二者引數幾乎一模一樣。

np.cov()描述的是兩個向量協同變化的程度,它的取值可能非常大,也可能非常小,這就導致沒法直觀地衡量二者協同變化的程度。相關係數實際上是正則化的協方差,n個變數的相關係數形成一個n維方陣

import numpy as np

np.random.seed(20200623)
x, y = np.random.randint(0, 20, size=(2, 4))

print(x)  # [10  2  1  1]
print(y)  # [16 18 11 10]

z = np.corrcoef(x, y)
print(z)
# [[1.         0.48510096]
#  [0.48510096 1.        ]]

a = np.dot(x - np.mean(x), y - np.mean(y))
b = np.sqrt(np.dot(x - np.mean(x), x - np.mean(x)))
c = np.sqrt(np.dot(y - np.mean(y), y - np.mean(y)))
print(a / (b * c))  # 0.4851009629263671

11.直方圖

numpy.digitize(x, bins, right=False)
  • x:numpy陣列
  • bins:一維單調陣列,必須是升序或者降序
  • right:間隔是否包含最右
  • 返回值:x在bins中的位置
import numpy as np

x = np.array([0.2, 6.4, 3.0, 1.6])
bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
inds = np.digitize(x, bins)
print(inds)  # [1 4 3 2]
for n in range(x.size):
    print(bins[inds[n] - 1], "<=", x[n], "<", bins[inds[n]])

# 0.0 <= 0.2 < 1.0
# 4.0 <= 6.4 < 10.0
# 2.5 <= 3.0 < 4.0
# 1.0 <= 1.6 < 2.5


import numpy as np

x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
bins = np.array([0, 5, 10, 15, 20])
inds = np.digitize(x, bins, right=True)
print(inds)  # [1 2 3 4 4]

inds = np.digitize(x, bins, right=False)
print(inds)  # [1 3 3 4 5]