1. 程式人生 > 實用技巧 >java中entity和dao層生成之逆向工具

java中entity和dao層生成之逆向工具

技術標籤:C#演算法c#

對比上一篇文章“順序儲存二叉樹”,鏈式儲存二叉樹的優點是節省空間。

二叉樹的性質:

1、在二叉樹的第i層上至多有2i-1個節點(i>=1)。

2、深度為k的二叉樹至多有2k-1個節點(k>=1)。

3、對任何一棵二叉樹T,如果其終結點數為n0,度為2的節點數為n2,則n0=n2+1。

4、具有n個節點的完全二叉樹的深度為log2n+1。

5、對於一棵有n個節點的完全二叉樹的節點按層序編號,若完全二叉樹中的某節點編號為i,則若有左孩子編號為2i,若有右孩子編號為2i+1,母親節點為i/2。

在此記錄下鏈式二叉樹的實現方式 :

/// <summary>
/// 樹節點 /// </summary> /// <typeparam name="T"></typeparam> public class TreeNode<T> { /// <summary> /// 節點資料 /// </summary> public T data { get; set; } /// <summary> /// 左節點 /// </summary> public
TreeNode<T> leftChild { get; set; } /// <summary> /// 右節點 /// </summary> public TreeNode<T> rightChild { get; set; } public TreeNode() { data = default(T); leftChild = null; rightChild = null; }
public TreeNode(T item) { data = item; leftChild = null; rightChild = null; } }
 /// <summary>
    /// 二叉樹 連結串列儲存結構
    /// </summary>
    /// <typeparam name="T"></typeparam>
    public class LinkStorageBinaryTree<T>
    {
        /// <summary>
        /// 樹根節
        /// </summary>
        private TreeNode<T> head { get; set; }

        public LinkStorageBinaryTree()
        {
            head = null;
        }

        public LinkStorageBinaryTree(T val)
        {
            head = new TreeNode<T>(val);
        }
        /// <summary>
        /// 獲取左節點
        /// </summary>
        /// <param name="treeNode"></param>
        /// <returns></returns>
        public TreeNode<T> GetLeftNode(TreeNode<T> treeNode)
        {
            if (treeNode == null)
                return null;
            return treeNode.leftChild;
        }
        /// <summary>
        /// 獲取右節點
        /// </summary>
        /// <param name="treeNode"></param>
        /// <returns></returns>
        public TreeNode<T> GetRightNode(TreeNode<T> treeNode)
        {
            if (treeNode == null)
                return null;
            return treeNode.rightChild;
        }
        /// <summary>
        /// 獲取根節點
        /// </summary>
        /// <returns></returns>
        public TreeNode<T> GetRoot()
        {
            return head;
        }
        /// <summary>
        /// 插入左節點
        /// </summary>
        /// <param name="val"></param>
        /// <param name="node"></param>
        /// <returns></returns>
        public TreeNode<T> AddLeftNode(T val,TreeNode<T> node)
        {
            if (node == null)
                throw new ArgumentNullException("引數錯誤");
            TreeNode<T> treeNode = new TreeNode<T>(val);
            TreeNode<T> childNode = node.leftChild;
            treeNode.leftChild = childNode;
            node.leftChild = treeNode;
            return treeNode;
        }

        /// <summary>
        /// 插入右節點
        /// </summary>
        /// <param name="val"></param>
        /// <param name="node"></param>
        /// <returns></returns>
        public TreeNode<T> AddRightNode(T val, TreeNode<T> node)
        {
            if (node == null)
                throw new ArgumentNullException("引數錯誤");
            TreeNode<T> treeNode = new TreeNode<T>(val);
            TreeNode<T> childNode = node.rightChild;
            treeNode.rightChild = childNode;
            node.rightChild = treeNode;
            return treeNode;
        }
        /// <summary>
        /// 刪除當前節點的 左節點
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public TreeNode<T> DeleteLeftNode(TreeNode<T> node)
        {
            if (node == null || node.leftChild == null)
                throw new ArgumentNullException("引數錯誤");
            TreeNode<T> leftChild = node.leftChild;
            node.leftChild = null;
            return leftChild;
        }

        /// <summary>
        /// 刪除當前節點的 右節點
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public TreeNode<T> DeleteRightNode(TreeNode<T> node)
        {
            if (node == null || node.leftChild == null)
                throw new ArgumentNullException("引數錯誤");
            TreeNode<T> rightChild = node.rightChild;
            node.rightChild = null;
            return rightChild;
        }

        /// <summary>
        /// 先序遍歷
        /// </summary>
        /// <param name="index"></param>
        public void PreorderTraversal(TreeNode<T> node)
        {
            //遞迴的終止條件
            if (head == null)
            {
                Console.WriteLine("當前樹為空");
                return;
            }
            if (node != null)
            {
                Console.Write(node.data+ " ");
                PreorderTraversal(node.leftChild);
                PreorderTraversal(node.rightChild);
            }
        }

        /// <summary>
        /// 中序遍歷
        /// </summary>
        /// <param name="index"></param>
        public void MiddlePrefaceTraversal(TreeNode<T> node)
        {
            //遞迴的終止條件
            if (head == null)
            {
                Console.WriteLine("當前樹為空");
                return;
            }
            if (node != null)
            {
                MiddlePrefaceTraversal(node.leftChild);

                Console.Write(node.data + " ");

                MiddlePrefaceTraversal(node.rightChild);
            }
        }

        /// <summary>
        /// 後序遍歷
        /// </summary>
        /// <param name="index"></param>
        public void AfterwordTraversal(TreeNode<T> node)
        {
            //遞迴的終止條件
            if (head == null)
            {
                Console.WriteLine("當前樹為空");
                return;
            }
            if (node != null)
            {
                AfterwordTraversal(node.leftChild);
                AfterwordTraversal(node.rightChild);
                Console.Write(node.data + " ");
            }
        }


        public void LevelTraversal()
        {
            if (head == null)
                return;
            //使用佇列先入先出
            Queue<TreeNode<T>> queue = new Queue<TreeNode<T>>();
            queue.Enqueue(head);

            while (queue.Any())
            {
                TreeNode<T> item = queue.Dequeue();
                Console.Write(item.data +" ");
                if (item.leftChild != null)
                    queue.Enqueue(item.leftChild);
                if (item.rightChild != null)
                    queue.Enqueue(item.rightChild);
            }
        }
        /// <summary>
        /// 校驗節點是否是葉子節點
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public bool ValidLeafNode(TreeNode<T> node)
        {
            if (node == null)
                throw new ArgumentNullException("引數錯誤");
            if (node.leftChild != null && node.rightChild != null)
            {
                Console.WriteLine($"節點 {node.data} 不是葉子節點");
                return false;
            }
            Console.WriteLine($"節點 {node.data} 是葉子節點");
            return true;
        }
    }

遍歷方式在順序儲存一文中已經用圖表示過,在此不做重複說明。

現在測試下:

LinkStorageBinaryTree<string> linkStorageBinary = new LinkStorageBinaryTree<string>("A");
TreeNode<string> tree1 = linkStorageBinary.AddLeftNode("B", linkStorageBinary.GetRoot());
TreeNode<string> tree2 = linkStorageBinary.AddRightNode("C", linkStorageBinary.GetRoot());
TreeNode<string> tree3 =linkStorageBinary.AddLeftNode("D", tree1);
linkStorageBinary.AddRightNode("E",tree1);
linkStorageBinary.AddLeftNode("F", tree2);
linkStorageBinary.AddRightNode("G", tree2);

//先序遍歷
Console.Write("先序遍歷:");
linkStorageBinary.PreorderTraversal(linkStorageBinary.GetRoot());
Console.WriteLine();

//中序遍歷
Console.Write("中序遍歷:");
linkStorageBinary.MiddlePrefaceTraversal(linkStorageBinary.GetRoot());
Console.WriteLine();

//中序遍歷
Console.Write("後序遍歷:");
linkStorageBinary.AfterwordTraversal(linkStorageBinary.GetRoot());
Console.WriteLine();

//層次遍歷
Console.Write("層次遍歷:");
linkStorageBinary.LevelTraversal();

linkStorageBinary.ValidLeafNode(tree1);
linkStorageBinary.ValidLeafNode(tree3);
Console.ReadLine();

輸出:


先序遍歷:A B D E C F G
中序遍歷:D B E A F C G
後序遍歷:D E B F G C A
層次遍歷:A B C D E F G 節點 B 不是葉子節點
節點 D 是葉子節點

在這裡插入圖片描述