1. 程式人生 > 實用技巧 >百度留+痕排+名軟+件 資料結構第四節( 樹(中))

百度留+痕排+名軟+件 資料結構第四節( 樹(中))

這次我們接著來說樹,上次說了樹的基本性質和遍歷一顆樹的4種方式,這次將會說到幾種很“有用”的二叉樹

二叉搜尋樹#

對一顆二叉樹,該如何實現它的動態查詢(會有新元素的新增,和對當前樹包含元素的刪除),前面我們已經學過了我們二分查詢,很自然的如果我們再構建一棵樹時,如果當前節點的左子樹都比他小,右子樹都比他大,對這樣的樹,我們叫做二叉搜尋樹。根據這樣的性質,我們可以很自然的得出,二叉搜尋樹最小的節點它的最左端的節點,二叉搜尋樹最大的節點它的最右端的節點。

二叉搜尋樹的查詢#

我們知道對於一棵二叉搜尋樹,他任何節點的左子樹都比他小,右子樹都比他大,自然的一種二分查詢,從根結點開始遍歷,如果當前節點比需要查詢的值大從他的右子樹,比需要查詢的值小從他的左子樹,相等則返回。如果直到指向為空都無法找到,說明該節點並不在樹上,下面是程式碼實現。

Copy
//find max value
Position FindMax(BinTree BST) {
	if (!BST) {
		return NULL;
	}
	while (BST->Right) {
		BST = BST->Right;
	}
	return BST;
}
//find min value
Position FindMin(BinTree BST) {
	if (!BST) {
		return NULL;
	}
	while (BST->Left) {
		BST = BST->Left;
	}
	return BST;
}
//find in value
Position Find(BinTree BST, ElementType X) {
	//the tree is empty ,return NULL;
	while (BST) {
		//the X is big than now position's value, may be in the right or doesn't has.
		if (X > BST->Data) {
			BST = BST->Right;
		}
		else if (X < BST->Data) {
			BST = BST->Left;
		}
		else {
			return BST;
		}
	}
	return NULL;
}

二叉搜尋樹的插入#

同查詢一個值一樣,對於二叉搜尋樹的插入,先從根結點開始遍歷,如果小於它就插入它的左子樹,大於它就插入它的右子樹。直到我們找到了位置,再申請一個節點將它接上去。

Copy
//insert
BinTree Insert(BinTree BST, ElementType X) {
	//if the tree is empty,creat a node and return
	if (!BST) {
		BST = malloc(sizeof(struct TNode));
		BST->Data = X;
		BST->Left = NULL;
		BST->Right = NULL;
	}
	else {
		//the X is big than now position, insert X in its right tree
		if (X > BST->Data) {
			BST->Right = Insert(BST->Right, X);
		}
		//the X is small than now position, insert X in its left tree
		else if (X < BST->Data) {
			BST->Left = Insert(BST->Left, X);
		}
		//when the X already in the tree, do nothing
		else {

		}
	}
	return BST;
}

二叉搜尋樹的刪除#

二叉樹最多有兩個節點,在刪除時我們可能遇到幾種情況,分別是該節點沒有子節點(葉子節點),有一個子節點,有兩個子節點。
如果沒有子節點,我們直接釋放掉該節點,返回一個NULL接上去。如果只有一個子節點,我們只需要釋放該節點,並把他的那個子節點接上去即可。有兩個子節點時,問題變得麻煩起來,有一個策略將是,將問題轉化為刪除一個葉節點,或刪除一個只有一個兒子的節點。
通過二叉搜尋數的性質我們知道,一顆樹的最小值,位於他的最左端,最大值位於它的最右端,我們可以找到該節點右子樹的最小值,賦值給該節點,同時刪除掉它(因為二叉搜尋樹的性質,它只可能是葉節點,或者只有一個兒子,而且那樣做不會破壞二叉搜尋樹的一個節點左子樹都比他小,右子樹都比他大的性質),找該節點左子樹的最大值同理。

Copy
//delete
BinTree Delete(BinTree BST, ElementType X) {
	if (!BST) {
		printf("NOT Found\n");
	}
	else {
		//the X is big than now position, delete X in its right tree
		if (X > BST->Data) {
			BST->Right = Delete(BST->Right, X);
		}
		//the X is small than now position, delete X in its left tree
		else if (X < BST->Data) {
			BST->Left = Delete(BST->Left, X);
		}
		//find the X positon
		else {
			//has two sub tree
			if (BST->Left && BST->Right) {
				BinTree temp = FindMax(BST->Left);
				BST->Data = temp->Data;
				temp->Data = X;
				Delete(BST->Left, X);
			}
			//has one or no sub tree
			else {
				BinTree temp = BST;
				//don't has left sub tree
				if (!BST->Left) {
					BST = BST->Right;
				}
				//don't has right sub tree
				else if (!BST->Right) {
					BST = BST->Left;
				}
				free(temp);
			}
		}
	}
	return BST;
}

平衡二叉樹#

平衡二叉樹的性質#

前面我面討論了二叉搜尋樹,現在,想象一下,如果我們按照升序序列將節點(1-10)插入樹中,不難發現,這個樹成了顆單邊樹這樣的樹有著和連結串列一樣的查詢效率,肯定是不希望發生這樣的事情的,這裡引入一個叫平衡二叉樹的樹(AVL),那麼這種樹有什麼特點呢?
平衡二叉樹由二叉搜尋樹而來,同樣的,也是必須滿足BST的性質,而且,這顆樹必須滿足,所有節點的左右子樹高度差BF(T)=hlhl-hrhr不大於1.
考慮一下,一個n層高的平衡二叉樹最小需要幾個節點?
答案是anan=1+a(n1+a(n2)1+a(n−1)+a(n−2)
對於一層高的平衡二叉樹,需要一個節點,兩層高的需要兩個節點,三層高的則需要一個節點加上它的左子樹(兩層的平衡二叉樹)和他的右子樹一層的平衡二叉樹。整個是一個遞迴的過程

平衡二叉樹的調整#

為了保證平衡二叉樹的性質,我們再插入節點或者刪除節點時,使該樹不平衡時,又應該如何調整它使它平衡呢?根據上面平衡二叉樹是一個遞迴的生成過程,我們可以知道,對於插入或者刪除,只需要修正被破壞平衡的節點為根節點構成的樹,即修正整棵樹的平衡。

第一種情況,破壞了平衡的節點,位於被破壞平衡節點的右子樹的右子樹,此時將被破壞平衡節點的右兒子提起來,自己做右兒子的左兒子,將右兒子的左兒子做自己的右兒子。(RR旋轉)

第二種情況,破壞了平衡的節點,位於被破壞平衡節點的左子樹的左子樹,根據對稱性我們很容易想到,此時將被破壞平衡節點的左兒子提起來,自己做左兒子的右兒子,將左兒子的右兒子做自己的左兒子。(LL旋轉)

第三種情況,破壞了平衡的節點,位於被破壞平衡節點的左子樹的右子樹,此時將破壞平衡節點的所在樹的根節點提出來做新的根,並令該根的左兒子為原樹根的左兒子,右兒子為原樹根節點。並且把破壞平衡節點的所在樹的根節點的左右子樹,分別接在當前根節點左兒子的右邊和右兒子的左邊。(LR旋轉)

第四種情況,類似於第3種情況的對稱,破壞了平衡的節點,位於被破壞平衡節點的右子樹的左子樹,只需對稱著像第三種情況那樣做。(RL旋轉)




(圖片來源https://www.icourse163.org/learn/ZJU-93001?tid=1461682474#/learn/content?type=detail&id=1238255569&cid=1258682934)

課後練習題(4個小題)#

04-樹4 是否同一棵二叉搜尋樹 (25point(s))#

給定一個插入序列就可以唯一確定一棵二叉搜尋樹。然而,一棵給定的二叉搜尋樹卻可以由多種不同的插入序列得到。例如分別按照序列{2, 1, 3}和{2, 3, 1}插入初始為空的二叉搜尋樹,都得到一樣的結果。於是對於輸入的各種插入序列,你需要判斷它們是否能生成一樣的二叉搜尋樹。

輸入格式:
輸入包含若干組測試資料。每組資料的第1行給出兩個正整數N (≤10)和L,分別是每個序列插入元素的個數和需要檢查的序列個數。第2行給出N個以空格分隔的正整數,作為初始插入序列。最後L行,每行給出N個插入的元素,屬於L個需要檢查的序列。

簡單起見,我們保證每個插入序列都是1到N的一個排列。當讀到N為0時,標誌輸入結束,這組資料不要處理。

輸出格式:
對每一組需要檢查的序列,如果其生成的二叉搜尋樹跟對應的初始序列生成的一樣,輸出“Yes”,否則輸出“No”。

輸入樣例:

4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0

輸出樣例:

Yes
No
No

解法:模擬法,將預設樹讀入儲存,每次讀入生成一個新樹,再遞迴去判斷每個節點位置是否相同,不同返回false,相同返回判斷左右兩個子樹是否相同的合取運算,如果傳入的兩個樹都空,返回true,其中一個不空返回false,都不空再去判斷

程式碼實現:

Copy
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
typedef struct TreeNode* BinTree;
#define ElementType int
struct TreeNode
{
	ElementType Data;
	BinTree Left;
	BinTree Right;
};
//insert
BinTree insert(ElementType X, BinTree BST) {
	//if the tree is empty,creat a node and return
	if (!BST) {
		BST = (BinTree)malloc(sizeof(struct TreeNode));
		BST->Data = X;
		BST->Left = NULL;
		BST->Right = NULL;
	}
	else {
		//the X is big than now position, insert X in its right tree
		if (X > BST->Data) {
			BST->Right = insert(X, BST->Right);
		}
		//the X is small than now position, insert X in its left tree
		else if (X < BST->Data) {
			BST->Left = insert(X, BST->Left);
		}
		//when the X already in the tree, do nothing
		else {

		}
	}
	return BST;
}
bool check(BinTree T1, BinTree T2) {
	if (T1==NULL && T2==NULL) {
		return true;
	}
	if(T1->Data==T2->Data){
		return check(T1->Left, T2->Left)&&check(T1->Right, T2->Right);
	}
	return false;
}
int main()
{
	int n, l;
	while (scanf("%d", &n)) {
		if (n == 0) {
			break;
		}
		scanf("%d", &l);
		BinTree OT = NULL;
		for (int i = 0; i < n; i++) {
			int temp;
			scanf("%d", &temp);
			OT = insert(temp, OT);
		}
		for (int j = 0; j < l; j++) {
			BinTree TestTree = NULL;
			for (int i = 0; i < n; i++) {
				int temp;
				scanf("%d", &temp);
				TestTree = insert(temp, TestTree);
			}
			if (!check(OT, TestTree)) {
				printf("No\n");
			}
			else {
				printf("Yes\n");
			}
		}
	}
}

04-樹5 Root of AVL Tree (25point(s))#

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:
For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Input 1:

70

解析:題目的意思是,讓你構建一顆2叉平衡樹,給定你插入序列,讓你輸出他的根節點,emm....那就模擬做一顆AVL(思路課程已經說了,就是把程式碼轉化成程式的過程)

程式碼:

Copy
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef struct TreeNode* BinTree;
#define ElementType int
struct TreeNode
{
	ElementType Data;
	BinTree Left;
	BinTree Right;
	int Height;
};
int getHeight(BinTree T) {
	if (T->Left == NULL && T->Right == NULL) {
		return 1;
	}
	else if (T->Left != NULL && T->Right == NULL) {
		return T->Left->Height+1;
	}
	else if (T->Left == NULL && T->Right != NULL) {
		return T->Right->Height + 1;
	}
	else {
		return max(T->Left->Height, T->Right->Height)+1;
	}
	
}
BinTree RR(BinTree T) {
	BinTree right = T->Right;
	T->Right = right->Left;
	right->Left = T;
	right->Height = getHeight(right);
	T->Height = getHeight(T);
	return right;
}
BinTree LL(BinTree T) {
	BinTree left = T->Left;
	T->Left = left->Right;
	left->Right = T;
	left->Height = getHeight(left);
	T->Height = getHeight(T);
	return left;
}
BinTree LR(BinTree T) {
	T->Left = RR(T->Left);
	return LL(T);
}
BinTree RL(BinTree T) {
	T->Right = LL(T->Right);
	return RR(T);
}
//insert
BinTree Insert(BinTree BST, ElementType X) {
	//if the tree is empty,creat a node and return
	if (!BST) {
		BST = (BinTree)malloc(sizeof(struct TreeNode));
		BST->Data = X;
		BST->Left = NULL;
		BST->Right = NULL;
		BST->Height = 0;
	}
	else {
		//the X is big than now position, insert X in its right tree
		if (X > BST->Data) {
			BST->Right = Insert(BST->Right, X);
			int h1, h2;
			if (BST->Left == NULL) {
				h1 = 0;
			}
			else {
				h1 = BST->Left->Height;
			}
			if (BST->Right == NULL) {
				h2 = 0;
			}
			else {
				h2 = BST->Right->Height;
			}
			//the tree is not avl
			if (abs(h1-h2)==2) {
				//LL
				if (X < BST->Right->Data) {
					BST = RL(BST);
				}
				//LR
				else {
					BST = RR(BST);
				}
			}
		}
		//the X is small than now position, insert X in its left tree
		else if (X < BST->Data) {
			BST->Left = Insert(BST->Left, X);
			int h1, h2;
			if (BST->Left == NULL) {
				h1 = 0;
			}
			else {
				h1 = BST->Left->Height;
			}
			if (BST->Right == NULL) {
				h2 = 0;
			}
			else {
				h2 = BST->Right->Height;
			}
			if (abs(h1-h2) == 2) {
				//RR
				if (X > BST->Left->Data) {
					BST = LR(BST);
				}
				//RL
				else {
					BST = LL(BST);
				}
			}
		}
		//when the X already in the tree, do nothing
		else {

		}
	}
	BST->Height = getHeight(BST);
	return BST;
}
int main(void) {
	int n;
	scanf("%d", &n);
	BinTree BST = NULL;
	for (int i = 0; i < n; i++)
	{
		int temp;
		scanf("%d", &temp);
		BST = Insert(BST, temp);
	}
	printf("%d\n", BST->Data);
	return 0;
}

04-樹6 Complete Binary Search Tree (30point(s))#

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

題解:
題目的意思是給你N個數字,讓你把它排成完全二叉搜尋樹(同時具有二差搜尋樹的性質和完全二叉樹的性質),輸出這棵樹的程式遍歷。仔細想一下其實根本不用構建一棵樹,因為完全二叉樹固定了節點的位置 ,這棵樹只可能有一種形狀,我們只需要將這N個數字排好序 ,遞迴的把它存進樹組中,陣列一位置為開始節點,他的兒子就是他當前位置的二倍和二倍加1。

程式碼實現:

Copy
#include<cstdio>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<stdbool.h>
using namespace std;
int arr1[1001];
int arr[1001];
int getrootIndex(int Left,int Right) {
	int p = floor(log10(Right-Left+1)/ log10(2));
	int leftnum = min(pow(2,p-1), (Right - Left + 1)-(pow(2, p)-1));
	return Left+leftnum+ (pow(2, p-1) - 1);
}
void specialSort(int Left,int Right,int root) {
	if (Left>Right) {
		return;
	}
	else if (Left == Right) {
		arr1[root] = arr[Left];
	}
	else {
		int p = getrootIndex(Left, Right);
		arr1[root] = arr[p];
		specialSort(Left, p - 1, root * 2);
		specialSort(p+1, Right, root * 2+1);
	}
}
int main() {
	int n, t;
	scanf("%d",&n);
	memset(arr, 10000, sizeof(arr));
	memset(arr1, 10000, sizeof(arr1));
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &t);
		arr[i] = t;
	}
	sort(arr, arr + n);
	specialSort(0, n - 1, 1);
	bool isf = true;
	for (int i = 1; i <= n; i++)
	{
		if (isf) {
			printf("%d",arr1[i]);
			isf = false;
		}
		else {
			printf(" %d", arr1[i]);
		}
	}
	return 0;
}

04-樹7 二叉搜尋樹的操作集 (30point(s))#

本題要求實現給定二叉搜尋樹的5種常用操作。

函式介面定義:

Copy
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree結構定義如下:

Copy
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  1. 函式Insert將X插入二叉搜尋樹BST並返回結果樹的根結點指標;
  2. 函式Delete將X從二叉搜尋樹BST中刪除,並返回結果樹的根結點指標;如果X不在樹中,則列印一行Not Found並返回原樹的根結點指標;
  3. 函式Find在二叉搜尋樹BST中找到X,返回該結點的指標;如果找不到則返回空指標;
  4. 函式FindMin返回二叉搜尋樹BST中最小元結點的指標;
  5. 函式FindMax返回二叉搜尋樹BST中最大元結點的指標。

裁判測試程式樣例:

Copy
#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍歷,由裁判實現,細節不表 */
void InorderTraversal( BinTree BT );  /* 中序遍歷,由裁判實現,細節不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的程式碼將被嵌在這裡 */

輸入樣例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

輸出樣例

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

解析:實現的函式即為本章第1節部分的內容,跟著思路寫就好

程式碼:

Copy
//find max value
Position FindMax(BinTree BST) {
	if (!BST) {
		return NULL;
	}
	while (BST->Right) {
		BST = BST->Right;
	}
	return BST;
}
//find min value
Position FindMin(BinTree BST) {
	if (!BST) {
		return NULL;
	}
	while (BST->Left) {
		BST = BST->Left;
	}
	return BST;
}
//find in value
Position Find(BinTree BST, ElementType X) {
	//the tree is empty ,return NULL;
	while (BST) {
		//the X is big than now position's value, may be in the right or doesn't has.
		if (X > BST->Data) {
			BST = BST->Right;
		}
		else if (X < BST->Data) {
			BST = BST->Left;
		}
		else {
			return BST;
		}
	}
	return NULL;
}
//insert
BinTree Insert(BinTree BST, ElementType X) {
	//if the tree is empty,creat a node and return
	if (!BST) {
		BST = malloc(sizeof(struct TNode));
		BST->Data = X;
		BST->Left = NULL;
		BST->Right = NULL;
	}
	else {
		//the X is big than now position, insert X in its right tree
		if (X > BST->Data) {
			BST->Right = Insert(BST->Right, X);
		}
		//the X is small than now position, insert X in its left tree
		else if (X < BST->Data) {
			BST->Left = Insert(BST->Left, X);
		}
		//when the X already in the tree, do nothing
		else {

		}
	}
	return BST;
}
//delete
BinTree Delete(BinTree BST, ElementType X) {
	if (!BST) {
		printf("Not Found\n");
	}
	else {
		//the X is big than now position, delete X in its right tree
		if (X > BST->Data) {
			BST->Right = Delete(BST->Right, X);
		}
		//the X is small than now position, delete X in its left tree
		else if (X < BST->Data) {
			BST->Left = Delete(BST->Left, X);
		}
		//find the X positon
		else {
			//has two sub tree
			if (BST->Left && BST->Right) {
				BinTree temp = FindMax(BST->Left);
				BST->Data = temp->Data;
				temp->Data = X;
				Delete(BST->Left, X);
			}
			//has one or no sub tree
			else {
				BinTree temp = BST;
				//don't has left sub tree
				if (!BST->Left) {
					BST = BST->Right;
				}
				//don't has right sub tree
				else if (!BST->Right) {
					BST = BST->Left;
				}
				free(temp);
			}
		}
	}
	return BST;
}