1. 程式人生 > 其它 >簡單訓練一個分類器——CIFAR10

簡單訓練一個分類器——CIFAR10

技術標籤:Pytorch深度學習pytorch

簡單訓練一個分類器

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

transform = transforms.Compose([transforms.ToTensor(
), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) # root - 資料集的根目錄 # train - 如果為True,則建立資料集training.pt,否則建立資料集test.pt。 # download - 如果為true,則從Internet下載資料集並將其放在根目錄中。
# transform(callable ,optional) - 一個函式/轉換,它接收PIL影象並返回轉換後的版本。例如,transforms.RandomCrop trainloader = torch.utils.data.DataLoader(trainset, batch_size=10, shuffle=True, num_workers=0) # 資料集,批次樣本數,遍歷後是否隨機排序, 資料載入的子程序數 testset = torchvision.datasets.CIFAR10(root='./data'
, train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=10, shuffle=False, num_workers=0) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def imshow(img): img = img / 2 + 0.5 # denormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # 獲取隨機資料 data_iter = iter(trainloader) images, labels = data_iter.next() # 展示影象 imshow(torchvision.utils.make_grid(images)) # 顯示影象標籤 print(' '.join('%5s' % classes[labels[j]] for j in range(10))) class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 定義Net的初始化函式,這個函式定義了該神經網路的基本結構 # Conv2d 輸入通道, 輸出通道, 核心大小 self.conv1 = nn.Conv2d(3, 10, 5) # 影象卷積,3通道輸入,10通道輸出 self.pool = nn.MaxPool2d(2, 2) # 池化層,可以降低資料體的空間尺寸 kernel_size:視窗大小, stride=None 視窗移動的步長、預設值是kernel_size self.conv2 = nn.Conv2d(10, 16, 5) # 影象卷積,10通道輸入,16通道輸出 self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全連線層 線性函式為:y = Wx + b,將conv2輸出的16通道5*5個節點連結到120個節點 self.fc2 = nn.Linear(120, 84) # 影象卷積 線性函式為:y = Wx + b,將fc1輸出120個節點連線至84個節點 self.fc3 = nn.Linear(84, 10) # 影象卷積 線性函式為:y = Wx + b,將fc2輸出84個節點連線至10個節點 def forward(self, x): x = self.pool(F.relu(self.conv1(x))) # 輸入x,conv1卷積,relu函式啟用,pool池化 x = self.pool(F.relu(self.conv2(x))) # 輸入x,conv2卷積,relu函式啟用,pool池化 x = x.view(-1, 16 * 5 * 5) # 將x轉換為fc1輸入的位數 x = F.relu(self.fc1(x)) # 輸入x,進入第一層網路,relu函式啟用 x = F.relu(self.fc2(x)) # 輸入x,進入第二層網路,relu函式啟用 x = self.fc3(x) # 輸入x,進入第二層網路 return x net = Net() criterion = nn.CrossEntropyLoss() # 損失函式,輸入模型、學習樣本,計算誤差 optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 優化函式 # momentum動量 若當前的梯度方向與累積的歷史梯度方向一致,則當前的梯度會被加強,從而這一步下降的幅度更大。若當前的梯度方向與累積的梯度方向不一致,則會減弱當前下降的梯度幅度。 for epoch in range(2): # 多批次迴圈 running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 獲取輸入 inputs, labels = data # labels為學習樣本 # 梯度置0 optimizer.zero_grad() # 正向傳播,反向傳播,優化 outputs = net(inputs) # 模型 loss = criterion(outputs, labels) loss.backward() # 反向傳播,計算當前梯度; optimizer.step() # 根據梯度更新網路引數 # 列印狀態資訊 running_loss += loss.item() if i % 2000 == 1999: # 每2000批次列印一次 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') data_iter = iter(testloader) # 讀取批測試集 images, labels = data_iter.next() # 提取一批測試集 imshow(torchvision.utils.make_grid(images)) # 顯示圖片 print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(10))) outputs = net(images) # 將測試集通過訓練好的網路 _, predicted = torch.max(outputs, 1) # 獲得輸出的判斷中最大的 print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(10))) correct, total = 0, 0 with torch.no_grad(): # 內容不進行計算圖構建 for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() # predicted == labels比較每個元素是否相等,sum()求和,item()將單元素張量轉為元素值 print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(10): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i])) plt.show() for i in range(10): print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i])) plt.show()