1. 程式人生 > 其它 >access 呼叫 webbrowser_織夢dedecms圖集productimagelist標籤呼叫和常見問題彙總

access 呼叫 webbrowser_織夢dedecms圖集productimagelist標籤呼叫和常見問題彙總

更多python教程請到: 菜鳥教程www.piaodoo.com

人人影視www.sfkyty.com

16影視www.591319.com

星辰影院www.591319.com


如下所示:

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)

Top level data directory. Here we assume the format of the directory conforms

to the ImageFolder structure

資料集路徑,路徑下的資料集分為訓練集和測試集,也就是train 以及val,train下分為兩類資料1,2,val集同理

data_dir = "/home/dell/Desktop/data/切割影象"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "inception" 
# Number of classes in the dataset
num_classes = 2#兩類資料1,2

Batch size for training (change depending on how much memory you have)

batch_size = 32#batchsize儘量選取合適,否則訓練時會記憶體溢位

Number of epochs to train for

num_epochs = 1000

Flag for feature extracting. When False, we finetune the whole model,

when True we only update the reshaped layer params

feature_extract = True

引數設定,使得我們能夠手動輸入命令列引數,就是讓風格變得和Linux命令列差不多

parser = argparse.ArgumentParser(description='PyTorch inception')
parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #輸出結果儲存路徑
parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢復訓練時的模型路徑
args = parser.parse_args()


訓練函式

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):

since = time.time()

val_acc_history = []

best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
print("Start Training, InceptionV3!")
with open("acc.txt", "w") as f1:
with open("log.txt", "w")as f2:
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('*' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode

      running_loss = 0.0
      running_corrects = 0

      # Iterate over data.
      for inputs, labels in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward
        # track history if only in train
        with torch.set_grad_enabled(phase == 'train'):
          
          if is_inception and phase == 'train':
            # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
            outputs, aux_outputs = model(inputs)
            loss1 = criterion(outputs, labels)
            loss2 = criterion(aux_outputs, labels)
            loss = loss1 + 0.4*loss2
          else:
            outputs = model(inputs)
            loss = criterion(outputs, labels)

          _, preds = torch.max(outputs, 1)

          # backward + optimize only if in training phase
          if phase == 'train':
            loss.backward()
            optimizer.step()

        # statistics
        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)
      epoch_loss = running_loss / len(dataloaders[phase].dataset)
      epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

      print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
      f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
      f2.write('\n')
      f2.flush()           
      # deep copy the model
      if phase == 'val':
        if (epoch+1)%50==0:
          #print('Saving model......')
          torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
        f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
        f1.write('\n')
        f1.flush()
      if phase == 'val' and epoch_acc > best_acc:
        f3 = open("best_acc.txt", "w")
        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
        f3.close()
        best_acc = epoch_acc
        best_model_wts = copy.deepcopy(model.state_dict())
      if phase == 'val':
        val_acc_history.append(epoch_acc)

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))

load best model weights

model.load_state_dict(best_model_wts)
return model, val_acc_history

是否更新引數

def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):

Initialize these variables which will be set in this if statement. Each of these

variables is model specific.

model_ft = None
input_size = 0

if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224

elif model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224

elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224

elif model_name == "squeezenet":
""" Squeezenet
"""
model_ft = models.squeezenet1_0(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = num_classes
input_size = 224

elif model_name == "densenet":
""" Densenet
"""
model_ft = models.densenet121(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, num_classes)
input_size = 224

elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
num_ftrs = model_ft.AuxLogits.fc.in_features
model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299

else:
print("Invalid model name, exiting...")
exit()

return model_ft, input_size

Initialize the model for this run

model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

Print the model we just instantiated

print(model_ft)

準備資料

data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}

print("Initializing Datasets and Dataloaders...")

Create training and validation datasets

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}

Create training and validation dataloaders

dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}

Detect if we have a GPU available

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
是否載入之前訓練過的模型
we='/home/dell/Desktop/dj/inception_050.pth'
model_ft.load_state_dict(torch.load(we))
'''

Send the model to GPU

model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)

Observe that all parameters are being optimized

optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)

Decay LR by a factor of 0.1 every 7 epochs

exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

Setup the loss fxn

criterion = nn.CrossEntropyLoss()

Train and evaluate

model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

'''

隨機初始化時的訓練程式

Initialize the non-pretrained version of the model used for this run

scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))

Plot the training curves of validation accuracy vs. number

of training epochs for the transfer learning method and

the model trained from scratch

ohist = []
shist = []

ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
'''

以上這篇pytorch之inception_v3的實現案例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援菜鳥教程www.piaodoo.com。