1. 程式人生 > 實用技巧 >OpenCV 影象拼接和影象融合技術

OpenCV 影象拼接和影象融合技術

影象拼接在實際的應用場景很廣,比如無人機航拍,遙感影象等等,影象拼接是進一步做影象理解基礎步驟,拼接效果的好壞直接影響接下來的工作,所以一個好的影象拼接演算法非常重要。

再舉一個身邊的例子吧,你用你的手機對某一場景拍照,但是你沒有辦法一次將所有你要拍的景物全部拍下來,所以你對該場景從左往右依次拍了好幾張圖,來把你要拍的所有景物記錄下來。那麼我們能不能把這些影象拼接成一個大圖呢?我們利用opencv就可以做到影象拼接的效果!

比如我們有對這兩張圖進行拼接。

從上面兩張圖可以看出,這兩張圖有比較多的重疊部分,這也是拼接的基本要求。

那麼要實現影象拼接需要那幾步呢?簡單來說有以下幾步:

  1. 對每幅圖進行特徵點提取
  2. 對對特徵點進行匹配
  3. 進行影象配準
  4. 把影象拷貝到另一幅影象的特定位置
  5. 對重疊邊界進行特殊處理

好吧,那就開始正式實現影象配準。

第一步就是特徵點提取。現在CV領域有很多特徵點的定義,比如sift、surf、harris角點、ORB都是很有名的特徵因子,都可以用來做影象拼接的工作,他們各有優勢。本文將使用ORB和SURF進行影象拼接,用其他方法進行拼接也是類似的。

基於SURF的影象拼接

用SIFT演算法來實現影象拼接是很常用的方法,但是因為SIFT計算量很大,所以在速度要求很高的場合下不再適用。所以,它的改進方法SURF因為在速度方面有了明顯的提高(速度是SIFT的3倍),所以在影象拼接領域還是大有作為。雖說SURF精確度和穩定性不及SIFT,但是其綜合能力還是優越一些。下面將詳細介紹拼接的主要步驟。

1.特徵點提取和匹配

 1 //提取特徵點    
 2 SurfFeatureDetector Detector(2000);  
 3 vector<KeyPoint> keyPoint1, keyPoint2;
 4 Detector.detect(image1, keyPoint1);
 5 Detector.detect(image2, keyPoint2);
 6 
 7 //特徵點描述,為下邊的特徵點匹配做準備    
 8 SurfDescriptorExtractor Descriptor;
 9 Mat imageDesc1, imageDesc2;
10 Descriptor.compute(image1, keyPoint1, imageDesc1);
11 Descriptor.compute(image2, keyPoint2, imageDesc2); 12 13 FlannBasedMatcher matcher; 14 vector<vector<DMatch> > matchePoints; 15 vector<DMatch> GoodMatchePoints; 16 17 vector<Mat> train_desc(1, imageDesc1); 18 matcher.add(train_desc); 19 matcher.train(); 20 21 matcher.knnMatch(imageDesc2, matchePoints, 2); 22 cout << "total match points: " << matchePoints.size() << endl; 23 24 // Lowe's algorithm,獲取優秀匹配點 25 for (int i = 0; i < matchePoints.size(); i++) 26 { 27 if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 28 { 29 GoodMatchePoints.push_back(matchePoints[i][0]); 30 } 31 } 32 33 Mat first_match; 34 drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 35 imshow("first_match ", first_match);

2.影象配準

這樣子我們就可以得到了兩幅待拼接圖的匹配點集,接下來我們進行影象的配準,即將兩張影象轉換為同一座標下,這裡我們需要使用findHomography函式來求得變換矩陣。但是需要注意的是,findHomography函式所要用到的點集是Point2f型別的,所有我們需要對我們剛得到的點集GoodMatchePoints再做一次處理,使其轉換為Point2f型別的點集。

1 vector<Point2f> imagePoints1, imagePoints2;
2 
3 for (int i = 0; i<GoodMatchePoints.size(); i++)
4 {
5     imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
6     imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
7 }

這樣子,我們就可以拿著imagePoints1, imagePoints2去求變換矩陣了,並且實現影象配準。值得注意的是findHomography函式的引數中我們選澤了CV_RANSAC,這表明我們選擇RANSAC演算法繼續篩選可靠地匹配點,這使得匹配點解更為精確。

 1 //獲取影象1到影象2的投影對映矩陣 尺寸為3*3  
 2 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
 3 ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差  
 4 //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
 5 cout << "變換矩陣為:\n" << homo << endl << endl; //輸出對映矩陣     
 6 
 7 //影象配準  
 8 Mat imageTransform1, imageTransform2;
 9 warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
10 //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
11 imshow("直接經過透視矩陣變換", imageTransform1);
12 imwrite("trans1.jpg", imageTransform1);

3. 影象拷貝

拷貝的思路很簡單,就是將左圖直接拷貝到配準圖上就可以了。

 1 //建立拼接後的圖,需提前計算圖的大小
 2 int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
 3 int dst_height = image02.rows;
 4 
 5 Mat dst(dst_height, dst_width, CV_8UC3);
 6 dst.setTo(0);
 7 
 8 imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
 9 image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
10 
11 imshow("b_dst", dst);

4.影象融合(去裂縫處理)

從上圖可以看出,兩圖的拼接並不自然,原因就在於拼接圖的交界處,兩圖因為光照色澤的原因使得兩圖交界處的過渡很糟糕,所以需要特定的處理解決這種不自然。這裡的處理思路是加權融合,在重疊部分由前一幅影象慢慢過渡到第二幅影象,即將影象的重疊區域的畫素值按一定的權值相加合成新的影象。

 1 //優化兩圖的連線處,使得拼接自然
 2 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
 3 {
 4     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界  
 5 
 6     double processWidth = img1.cols - start;//重疊區域的寬度  
 7     int rows = dst.rows;
 8     int cols = img1.cols; //注意,是列數*通道數
 9     double alpha = 1;//img1中畫素的權重  
10     for (int i = 0; i < rows; i++)
11     {
12         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
13         uchar* t = trans.ptr<uchar>(i);
14         uchar* d = dst.ptr<uchar>(i);
15         for (int j = start; j < cols; j++)
16         {
17             //如果遇到影象trans中無畫素的黑點,則完全拷貝img1中的資料
18             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
19             {
20                 alpha = 1;
21             }
22             else
23             {
24                 //img1中畫素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好  
25                 alpha = (processWidth - (j - start)) / processWidth;
26             }
27 
28             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
29             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
30             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
31 
32         }
33     }
34 }

多嘗試幾張,驗證拼接效果

測試一

測試二

測試三

最後給出完整的SURF演算法實現的拼接程式碼。

  1 #include "highgui/highgui.hpp"    
  2 #include "opencv2/nonfree/nonfree.hpp"    
  3 #include "opencv2/legacy/legacy.hpp"   
  4 #include <iostream>  
  5 
  6 using namespace cv;
  7 using namespace std;
  8 
  9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
 10 
 11 typedef struct
 12 {
 13     Point2f left_top;
 14     Point2f left_bottom;
 15     Point2f right_top;
 16     Point2f right_bottom;
 17 }four_corners_t;
 18 
 19 four_corners_t corners;
 20 
 21 void CalcCorners(const Mat& H, const Mat& src)
 22 {
 23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//變換後的座標值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;
 29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;
 31     cout << "V1: " << V1 << endl;
 32     corners.left_top.x = v1[0] / v1[2];
 33     corners.left_top.y = v1[1] / v1[2];
 34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;
 37     v2[1] = src.rows;
 38     v2[2] = 1;
 39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;
 42     corners.left_bottom.x = v1[0] / v1[2];
 43     corners.left_bottom.y = v1[1] / v1[2];
 44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;
 47     v2[1] = 0;
 48     v2[2] = 1;
 49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;
 52     corners.right_top.x = v1[0] / v1[2];
 53     corners.right_top.y = v1[1] / v1[2];
 54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;
 57     v2[1] = src.rows;
 58     v2[2] = 1;
 59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;
 62     corners.right_bottom.x = v1[0] / v1[2];
 63     corners.right_bottom.y = v1[1] / v1[2];
 64 
 65 }
 66 
 67 int main(int argc, char *argv[])
 68 {
 69     Mat image01 = imread("g5.jpg", 1);    //右圖
 70     Mat image02 = imread("g4.jpg", 1);    //左圖
 71     imshow("p2", image01);
 72     imshow("p1", image02);
 73 
 74     //灰度圖轉換  
 75     Mat image1, image2;
 76     cvtColor(image01, image1, CV_RGB2GRAY);
 77     cvtColor(image02, image2, CV_RGB2GRAY);
 78 
 79 
 80     //提取特徵點    
 81     SurfFeatureDetector Detector(2000);  
 82     vector<KeyPoint> keyPoint1, keyPoint2;
 83     Detector.detect(image1, keyPoint1);
 84     Detector.detect(image2, keyPoint2);
 85 
 86     //特徵點描述,為下邊的特徵點匹配做準備    
 87     SurfDescriptorExtractor Descriptor;
 88     Mat imageDesc1, imageDesc2;
 89     Descriptor.compute(image1, keyPoint1, imageDesc1);
 90     Descriptor.compute(image2, keyPoint2, imageDesc2);
 91 
 92     FlannBasedMatcher matcher;
 93     vector<vector<DMatch> > matchePoints;
 94     vector<DMatch> GoodMatchePoints;
 95 
 96     vector<Mat> train_desc(1, imageDesc1);
 97     matcher.add(train_desc);
 98     matcher.train();
 99 
100     matcher.knnMatch(imageDesc2, matchePoints, 2);
101     cout << "total match points: " << matchePoints.size() << endl;
102 
103     // Lowe's algorithm,獲取優秀匹配點
104     for (int i = 0; i < matchePoints.size(); i++)
105     {
106         if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
107         {
108             GoodMatchePoints.push_back(matchePoints[i][0]);
109         }
110     }
111 
112     Mat first_match;
113     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
114     imshow("first_match ", first_match);
115 
116     vector<Point2f> imagePoints1, imagePoints2;
117 
118     for (int i = 0; i<GoodMatchePoints.size(); i++)
119     {
120         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
121         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
122     }
123 
124 
125 
126     //獲取影象1到影象2的投影對映矩陣 尺寸為3*3  
127     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
128     ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差  
129     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
130     cout << "變換矩陣為:\n" << homo << endl << endl; //輸出對映矩陣      
131 
132    //計算配準圖的四個頂點座標
133     CalcCorners(homo, image01);
134     cout << "left_top:" << corners.left_top << endl;
135     cout << "left_bottom:" << corners.left_bottom << endl;
136     cout << "right_top:" << corners.right_top << endl;
137     cout << "right_bottom:" << corners.right_bottom << endl;
138 
139     //影象配準  
140     Mat imageTransform1, imageTransform2;
141     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
142     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
143     imshow("直接經過透視矩陣變換", imageTransform1);
144     imwrite("trans1.jpg", imageTransform1);
145 
146 
147     //建立拼接後的圖,需提前計算圖的大小
148     int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
149     int dst_height = image02.rows;
150 
151     Mat dst(dst_height, dst_width, CV_8UC3);
152     dst.setTo(0);
153 
154     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
155     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
156 
157     imshow("b_dst", dst);
158 
159 
160     OptimizeSeam(image02, imageTransform1, dst);
161 
162 
163     imshow("dst", dst);
164     imwrite("dst.jpg", dst);
165 
166     waitKey();
167 
168     return 0;
169 }
170 
171 
172 //優化兩圖的連線處,使得拼接自然
173 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
174 {
175     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界  
176 
177     double processWidth = img1.cols - start;//重疊區域的寬度  
178     int rows = dst.rows;
179     int cols = img1.cols; //注意,是列數*通道數
180     double alpha = 1;//img1中畫素的權重  
181     for (int i = 0; i < rows; i++)
182     {
183         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
184         uchar* t = trans.ptr<uchar>(i);
185         uchar* d = dst.ptr<uchar>(i);
186         for (int j = start; j < cols; j++)
187         {
188             //如果遇到影象trans中無畫素的黑點,則完全拷貝img1中的資料
189             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
190             {
191                 alpha = 1;
192             }
193             else
194             {
195                 //img1中畫素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好  
196                 alpha = (processWidth - (j - start)) / processWidth;
197             }
198 
199             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
200             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
201             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
202 
203         }
204     }
205 }

基於ORB的影象拼接

利用ORB進行影象拼接的思路跟上面的思路基本一樣,只是特徵提取和特徵點匹配的方式略有差異罷了。這裡就不再詳細介紹思路了,直接貼程式碼看效果。

  1 #include "highgui/highgui.hpp"    
  2 #include "opencv2/nonfree/nonfree.hpp"    
  3 #include "opencv2/legacy/legacy.hpp"   
  4 #include <iostream>  
  5 
  6 using namespace cv;
  7 using namespace std;
  8 
  9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
 10 
 11 typedef struct
 12 {
 13     Point2f left_top;
 14     Point2f left_bottom;
 15     Point2f right_top;
 16     Point2f right_bottom;
 17 }four_corners_t;
 18 
 19 four_corners_t corners;
 20 
 21 void CalcCorners(const Mat& H, const Mat& src)
 22 {
 23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//變換後的座標值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;
 29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;
 31     cout << "V1: " << V1 << endl;
 32     corners.left_top.x = v1[0] / v1[2];
 33     corners.left_top.y = v1[1] / v1[2];
 34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;
 37     v2[1] = src.rows;
 38     v2[2] = 1;
 39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;
 42     corners.left_bottom.x = v1[0] / v1[2];
 43     corners.left_bottom.y = v1[1] / v1[2];
 44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;
 47     v2[1] = 0;
 48     v2[2] = 1;
 49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;
 52     corners.right_top.x = v1[0] / v1[2];
 53     corners.right_top.y = v1[1] / v1[2];
 54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;
 57     v2[1] = src.rows;
 58     v2[2] = 1;
 59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;
 62     corners.right_bottom.x = v1[0] / v1[2];
 63     corners.right_bottom.y = v1[1] / v1[2];
 64 
 65 }
 66 
 67 int main(int argc, char *argv[])
 68 {
 69     Mat image01 = imread("t1.jpg", 1);    //右圖
 70     Mat image02 = imread("t2.jpg", 1);    //左圖
 71     imshow("p2", image01);
 72     imshow("p1", image02);
 73 
 74     //灰度圖轉換  
 75     Mat image1, image2;
 76     cvtColor(image01, image1, CV_RGB2GRAY);
 77     cvtColor(image02, image2, CV_RGB2GRAY);
 78 
 79 
 80     //提取特徵點    
 81     OrbFeatureDetector  surfDetector(3000);  
 82     vector<KeyPoint> keyPoint1, keyPoint2;
 83     surfDetector.detect(image1, keyPoint1);
 84     surfDetector.detect(image2, keyPoint2);
 85 
 86     //特徵點描述,為下邊的特徵點匹配做準備    
 87     OrbDescriptorExtractor  SurfDescriptor;
 88     Mat imageDesc1, imageDesc2;
 89     SurfDescriptor.compute(image1, keyPoint1, imageDesc1);
 90     SurfDescriptor.compute(image2, keyPoint2, imageDesc2);
 91 
 92     flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
 93 
 94     vector<DMatch> GoodMatchePoints;
 95 
 96     Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);
 97     flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());
 98 
 99     // Lowe's algorithm,獲取優秀匹配點
100     for (int i = 0; i < matchDistance.rows; i++)
101     {
102         if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1))
103         {
104             DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
105             GoodMatchePoints.push_back(dmatches);
106         }
107     }
108 
109     Mat first_match;
110     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
111     imshow("first_match ", first_match);
112 
113     vector<Point2f> imagePoints1, imagePoints2;
114 
115     for (int i = 0; i<GoodMatchePoints.size(); i++)
116     {
117         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
118         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
119     }
120 
121 
122 
123     //獲取影象1到影象2的投影對映矩陣 尺寸為3*3  
124     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
125     ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差  
126     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
127     cout << "變換矩陣為:\n" << homo << endl << endl; //輸出對映矩陣      
128 
129                                                 //計算配準圖的四個頂點座標
130     CalcCorners(homo, image01);
131     cout << "left_top:" << corners.left_top << endl;
132     cout << "left_bottom:" << corners.left_bottom << endl;
133     cout << "right_top:" << corners.right_top << endl;
134     cout << "right_bottom:" << corners.right_bottom << endl;
135 
136     //影象配準  
137     Mat imageTransform1, imageTransform2;
138     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
139     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
140     imshow("直接經過透視矩陣變換", imageTransform1);
141     imwrite("trans1.jpg", imageTransform1);
142 
143 
144     //建立拼接後的圖,需提前計算圖的大小
145     int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
146     int dst_height = image02.rows;
147 
148     Mat dst(dst_height, dst_width, CV_8UC3);
149     dst.setTo(0);
150 
151     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
152     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
153 
154     imshow("b_dst", dst);
155 
156 
157     OptimizeSeam(image02, imageTransform1, dst);
158 
159 
160     imshow("dst", dst);
161     imwrite("dst.jpg", dst);
162 
163     waitKey();
164 
165     return 0;
166 }
167 
168 
169 //優化兩圖的連線處,使得拼接自然
170 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
171 {
172     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界  
173 
174     double processWidth = img1.cols - start;//重疊區域的寬度  
175     int rows = dst.rows;
176     int cols = img1.cols; //注意,是列數*通道數
177     double alpha = 1;//img1中畫素的權重  
178     for (int i = 0; i < rows; i++)
179     {
180         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
181         uchar* t = trans.ptr<uchar>(i);
182         uchar* d = dst.ptr<uchar>(i);
183         for (int j = start; j < cols; j++)
184         {
185             //如果遇到影象trans中無畫素的黑點,則完全拷貝img1中的資料
186             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
187             {
188                 alpha = 1;
189             }
190             else
191             {
192                 //img1中畫素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好  
193                 alpha = (processWidth - (j - start)) / processWidth;
194             }
195 
196             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
197             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
198             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
199 
200         }
201     }
202 }

看一看拼接效果,我覺得還是不錯的。

看一下這一組圖片,這組圖片產生了鬼影,為什麼?因為兩幅圖中的人物走動了啊!所以要做影象拼接,儘量保證使用的是靜態圖片,不要加入一些動態因素干擾拼接。

opencv自帶的拼接演算法stitch

opencv其實自己就有實現影象拼接的演算法,當然效果也是相當好的,但是因為其實現很複雜,而且程式碼量很龐大,其實在一些小應用下的拼接有點殺雞用牛刀的感覺。最近在閱讀sticth原始碼時,發現其中有幾個很有意思的地方。

1.opencv stitch選擇的特徵檢測方式

一直很好奇opencv stitch演算法到底選用了哪個演算法作為其特徵檢測方式,是ORB,SIFT還是SURF?讀原始碼終於看到答案。

1 #ifdef HAVE_OPENCV_NONFREE
2         stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder());
3 #else
4         stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder());
5 #endif

在原始碼createDefault函式中(預設設定),第一選擇是SURF,第二選擇才是ORB(沒有NONFREE模組才選),所以既然大牛們這麼選擇,必然是經過綜合考慮的,所以應該SURF演算法在影象拼接有著更優秀的效果。

2.opencv stitch獲取匹配點的方式

以下程式碼是opencv stitch原始碼中的特徵點提取部分,作者使用了兩次特徵點提取的思路:先對圖一進行特徵點提取和篩選匹配(1->2),再對圖二進行特徵點的提取和匹配(2->1),這跟我們平時的一次提取的思路不同,這種二次提取的思路可以保證更多的匹配點被選中,匹配點越多,findHomography求出的變換越準確。這個思路值得借鑑。

 1 matches_info.matches.clear();
 2 
 3 Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();
 4 Ptr<flann::SearchParams> searchParams = new flann::SearchParams();
 5 
 6 if (features2.descriptors.depth() == CV_8U)
 7 {
 8     indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
 9     searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
10 }
11 
12 FlannBasedMatcher matcher(indexParams, searchParams);
13 vector< vector<DMatch> > pair_matches;
14 MatchesSet matches;
15 
16 // Find 1->2 matches
17 matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
18 for (size_t i = 0; i < pair_matches.size(); ++i)
19 {
20     if (pair_matches[i].size() < 2)
21         continue;
22     const DMatch& m0 = pair_matches[i][0];
23     const DMatch& m1 = pair_matches[i][1];
24     if (m0.distance < (1.f - match_conf_) * m1.distance)
25     {
26         matches_info.matches.push_back(m0);
27         matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
28     }
29 }
30 LOG("\n1->2 matches: " << matches_info.matches.size() << endl);
31 
32 // Find 2->1 matches
33 pair_matches.clear();
34 matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
35 for (size_t i = 0; i < pair_matches.size(); ++i)
36 {
37     if (pair_matches[i].size() < 2)
38         continue;
39     const DMatch& m0 = pair_matches[i][0];
40     const DMatch& m1 = pair_matches[i][1];
41     if (m0.distance < (1.f - match_conf_) * m1.distance)
42         if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
43             matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
44 }
45 LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);

這裡我仿照opencv原始碼二次提取特徵點的思路對我原有拼接程式碼進行改寫,實驗證明獲取的匹配點確實較一次提取要多。

 1 //提取特徵點    
 2 SiftFeatureDetector Detector(1000);  // 海塞矩陣閾值,在這裡調整精度,值越大點越少,越精準 
 3 vector<KeyPoint> keyPoint1, keyPoint2;
 4 Detector.detect(image1, keyPoint1);
 5 Detector.detect(image2, keyPoint2);
 6 
 7 //特徵點描述,為下邊的特徵點匹配做準備    
 8 SiftDescriptorExtractor Descriptor;
 9 Mat imageDesc1, imageDesc2;
10 Descriptor.compute(image1, keyPoint1, imageDesc1);
11 Descriptor.compute(image2, keyPoint2, imageDesc2);
12 
13 FlannBasedMatcher matcher;
14 vector<vector<DMatch> > matchePoints;
15 vector<DMatch> GoodMatchePoints;
16 
17 MatchesSet matches;
18 
19 vector<Mat> train_desc(1, imageDesc1);
20 matcher.add(train_desc);
21 matcher.train();
22 
23 matcher.knnMatch(imageDesc2, matchePoints, 2);
24 
25 // Lowe's algorithm,獲取優秀匹配點
26 for (int i = 0; i < matchePoints.size(); i++)
27 {
28     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
29     {
30         GoodMatchePoints.push_back(matchePoints[i][0]);
31         matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx));
32     }
33 }
34 cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl;
35 
36 #if 1
37 
38 FlannBasedMatcher matcher2;
39 matchePoints.clear();
40 vector<Mat> train_desc2(1, imageDesc2);
41 matcher2.add(train_desc2);
42 matcher2.train();
43 
44 matcher2.knnMatch(imageDesc1, matchePoints, 2);
45 // Lowe's algorithm,獲取優秀匹配點
46 for (int i = 0; i < matchePoints.size(); i++)
47 {
48     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
49     {
50         if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end())
51         {
52             GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance));
53         }
54         
55     }
56 }
57 cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl;
58 #endif

最後再看一下opencv stitch的拼接效果吧~速度雖然比較慢,但是效果還是很好的。

 1 #include <iostream>
 2 #include <opencv2/core/core.hpp>
 3 #include <opencv2/highgui/highgui.hpp>
 4 #include <opencv2/imgproc/imgproc.hpp>
 5 #include <opencv2/stitching/stitcher.hpp>
 6 using namespace std;
 7 using namespace cv;
 8 bool try_use_gpu = false;
 9 vector<Mat> imgs;
10 string result_name = "dst1.jpg";
11 int main(int argc, char * argv[])
12 {
13     Mat img1 = imread("34.jpg");
14     Mat img2 = imread("35.jpg");
15 
16     imshow("p1", img1);
17     imshow("p2", img2);
18 
19     if (img1.empty() || img2.empty())
20     {
21         cout << "Can't read image" << endl;
22         return -1;
23     }
24     imgs.push_back(img1);
25     imgs.push_back(img2);
26 
27 
28     Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
29     // 使用stitch函式進行拼接
30     Mat pano;
31     Stitcher::Status status = stitcher.stitch(imgs, pano);
32     if (status != Stitcher::OK)
33     {
34         cout << "Can't stitch images, error code = " << int(status) << endl;
35         return -1;
36     }
37     imwrite(result_name, pano);
38     Mat pano2 = pano.clone();
39     // 顯示源影象,和結果影象
40     imshow("全景影象", pano);
41     if (waitKey() == 27)
42         return 0;
43 }