pytorch初學影象分類器
阿新 • • 發佈:2020-12-27
訓練一個影象分類器
1.使用torchvision載入和正則化CIFAR10訓練集和測試集
2.構造一個CNN
3.構造損失函式
4.訓練網路
5.測試網路
1. 載入和正規化CIFAR10
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms. Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False ,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' )
Files already downloaded and verified
Files already downloaded and verified
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(trainloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
truck car bird ship
2. 定義一個卷積神經網路
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
net.to(device)
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
3. 定義損失函式和優化器
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # momentum為動量,解決區域性最優解問題
4. 訓練CNN
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# inputs, labels = data # 使用cpu訓練
inputs, labels = data[0].to(device), data[1].to(device) # 使用gpu訓練
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999: # 每兩千次,計算一下loss的總和,看總體的降低
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
[1, 2000] loss: 2.139
[1, 4000] loss: 1.818
[1, 6000] loss: 1.678
[1, 8000] loss: 1.575
[1, 10000] loss: 1.523
[1, 12000] loss: 1.490
[2, 2000] loss: 1.417
[2, 4000] loss: 1.345
[2, 6000] loss: 1.356
[2, 8000] loss: 1.314
[2, 10000] loss: 1.291
[2, 12000] loss: 1.279
Finished Training
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
5. 測試網路
dataiter = iter(testloader) # dataload迭代器
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
GroundTruth: cat ship ship plane
net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1) # dim = 1, 將維度壓縮為1
print(outputs) # 每一行代表一個圖片的輸出值
print(predicted) # 每張圖片最大輸出值的下邊
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
tensor([[-2.5090, -3.2349, 1.7301, 2.9694, 3.0115, 2.8149, 3.4539, 0.7578,
-3.6328, -3.4352],
[-0.8140, -4.5701, 2.3966, 2.8336, -0.1575, 5.3245, -0.4004, 1.8420,
-3.9213, -2.3566],
[ 1.6518, 0.1281, 2.1819, -0.2296, 4.1228, -0.2814, 1.4106, -0.8388,
-2.4360, -3.0393],
[-1.2521, -3.1468, 0.3812, 0.9961, 4.1565, 1.7851, 0.2695, 6.6411,
-5.3557, -1.3407]])
tensor([6, 5, 4, 7])
Predicted: frog dog deer horse
correct = 0
total = 0
with torch.no_grad(): # 預測的話不需要計算gradient
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
Accuracy of the network on the 10000 test images: 56 %