1. 程式人生 > 其它 >使用KNN演算法實現手寫數字識別

使用KNN演算法實現手寫數字識別

1.文字檔案資料
在這裡插入圖片描述
在這裡插入圖片描述
等等
2.將其3232的二進位制影象轉換為11024的向量
3.測試演算法

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   :KNN -> kNN
@IDE    :PyCharm
@Author :zgq
@Date   :2021/1/7 14:15
@Desc   :
=================================================='''
from numpy import
* import operator #運算子模組 import matplotlib import matplotlib.pyplot as plt from os import listdir def classify0(inX,dataSet,labels,k): #inx用於分類的輸入向量 #訓練樣本集dataset #lables標籤 #k最近鄰數目 #距離計算 dataSetSize=dataSet.shape[0] #dataset有幾行 diffMat=tile(inX,(dataSetSize,1))-dataSet #輸入向量重複了已有資料集的行數,一起減掉,出來一個新的矩陣,每個數字都記錄當前新樣本該維度與每個樣本差值
sqDiffMat=diffMat**2 sqDistances=sqDiffMat.sum(axis=1) #所有橫軸元素加和 distances=sqDistances**0.5 #到此處時 distance為一個一位列陣列,記錄每條樣本與新樣本的距離 sortedDistIndicies= distances.argsort() #對distance進行升序排序 classCount={} #DICT型別 for i in range(k): #尋找距離最小的K個點 voteIlabel = labels[sortedDistIndicies[
i]] #返回距離排序中前K條資料的標籤 classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 #classCount.get(voteIlabel,0) 字典獲取vouteIlabel值,沒有的話返回0 #此處for迴圈將距離最近的K個數據標籤進行統計:每次for迴圈第一步,將第i個標籤記錄到voteIlable中,第二部將該標籤出現後再dict中次數加一 sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] #將img資料轉換為向量 def img2vector(filename): returnVect=zeros((1,1024)) fr=open(filename) for i in range(32): lineStr=fr.readline() for j in range(32): returnVect[0,32*i+j]=int(lineStr[j]) return returnVect #手寫數字識別系統的測試程式碼 def handwritingClassTest(): hwLabels=[] trainingFileList=listdir('trainingDigits') #listdir可以列出給定目錄的檔名 m=len(trainingFileList) trainingMat=zeros((m,1024)) for i in range(m): fileNameStr=trainingFileList[i] #獲取當前第i個檔名 fileStr=fileNameStr.split('.')[0] #先用點來切分,切分為0_0和txt [0_0,txt]取第0項 classNumStr=int(fileStr.split('_')[0]) hwLabels.append(classNumStr) #將所有的標籤按照順序新增到了hwLables中 trainingMat[i,:]=img2vector('trainingDigits/%s' % fileNameStr) #順便將每一個檔案都轉為向量存入trainingMat中 testFileList=listdir('testDigits') #將測試檔案的名字作為列表給予testFilelist errorCount=0.0 mTest=len(testFileList) #取test的集的總數 for i in range(mTest): fileNameStr=testFileList[i] fileStr=fileNameStr.split('.')[0] classNumStr=int(fileStr.split('_')[0]) vectorUnderTest=img2vector('testDigits/%s' % fileNameStr) #拿出一條測試集資料構成測試向量 classifierResult=classify0(vectorUnderTest,trainingMat,hwLabels,3) #此處訓練集樣本和標籤行數是對齊的 print("the classifier came back with : %d,the real answer is : %d" %(classifierResult,classNumStr)) if (classifierResult!=classNumStr): errorCount=errorCount+1.0 print("\n the total number of errors is :%d" % errorCount) print("\n the total error rate is: %f" % (errorCount/float(mTest))) handwritingClassTest()

測試結果:

the classifier came back with : 0,the real answer is : 0
the classifier came back with : 0,the real answer is : 0
the classifier came back with : 0,the real answer is : 0
the classifier came back with : 0,the real answer is : 0
the classifier came back with : 0,the real answer is : 0
the classifier came back with : 0,the real answer is : 0
……
the classifier came back with : 1,the real answer is : 1
the classifier came back with : 7,the real answer is : 1
the classifier came back with : 1,the real answer is : 1
……
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 6,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
the classifier came back with : 3,the real answer is : 8
the classifier came back with : 8,the real answer is : 8
……

the total number of errors is :10
 the total error rate is: 0.010571