1. 程式人生 > 實用技巧 >學習進度筆記11

學習進度筆記11

TensorFlow邏輯迴歸

邏輯迴歸可以看作只有一層網路的前向神經網路,並且引數連線的權重只是一個值,而非矩陣。公式為:y_predict=logistic(X*W+b),其中X為輸入,W為輸入與隱含層之間的權重,b為隱含層神經元的偏置,而logistic為啟用函式,一般為sigmoid或者tanh,y_predict為最終預測結果。

邏輯迴歸是一種分類器模型,需要函式不斷的優化引數,這裡目標函式為y_predict與真實標籤Y之間的L2距離,使用隨機梯度下降演算法來更新權重和偏置。

原始碼:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import
input_data import os os.environ["CUDA_VISIBLE_DEVICES"]="0" mnist=input_data.read_data_sets("/home/yxcx/tf_data",one_hot=True) #Parameters learning_rate=0.01 training_epochs=25 batch_size=100 display_step=1 #tf Graph Input x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) #Set model weights
W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) #Construct model pred=tf.nn.softmax(tf.matmul(x,W)+b) #Minimize error using cross entropy cost=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) #Gradient Descent optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#Initialize the variables init=tf.global_variables_initializer() #Start training with tf.Session() as sess: sess.run(init) #Training cycle for epoch in range(training_epochs): avg_cost=0 total_batch=int(mnist.train.num_examples/batch_size) # loop over all batches for i in range(total_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) #Fit training using batch data _,c=sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys}) #Conpute average loss avg_cost+= c/total_batch if (epoch+1) % display_step==0: print("Epoch:",'%04d' % (epoch+1),"Cost:" ,"{:.09f}".format(avg_cost)) print("Optimization Finished!") #Test model correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) # Calculate accuracy for 3000 examples accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print("Accuracy:",accuracy.eval({x:mnist.test.images[:3000],y:mnist.test.labels[:3000]}))

結果截圖: