MYSQL 鎖機制
阿新 • • 發佈:2021-01-19
MYSQL ( 鎖機制)
鎖是計算機協調多個程序或執行緒併發訪問某一資源的機制。在資料庫中,除傳統的計算資源(如CPU、RAM、I/O等)的爭用以外,資料也是一種供許多使用者共享的資源。如何保證資料併發訪問的一致性、有效性是所有資料庫必須解決的一個問題,鎖衝突也是影響資料庫併發訪問效能的一個重要因素。從這個角度來說,鎖對資料庫而言顯得尤其重要,也更加複雜。本章我們著重討論MySQL鎖機制的特點,常見的鎖問題,以及解決MySQL鎖問題的一些方法或建議。
MySQL鎖概述 相對其他資料庫而言,MySQL的鎖機制比較簡單,其最顯著的特點是不同的儲存引擎支援不同的鎖機制。比如,MyISAM和MEMORY儲存引擎採用的是表級鎖(table-level locking);BDB儲存引擎採用的是頁面鎖(page-level locking),但也支援表級鎖;InnoDB儲存引擎既支援行級鎖(row-level locking),也支援表級鎖,但預設情況下是採用行級鎖。 MySQL這3種鎖的特性可大致歸納如下。 開銷、加鎖速度、死鎖、粒度、併發效能查詢表級鎖爭用情況
可以通過檢查table_locks_waited和table_locks_immediate狀態變數來分析系統上的表鎖定爭奪: mysql> show status like 'table%';MySQL表級鎖的鎖模式
MySQL的表級鎖有兩種模式:表共享讀鎖(Table Read Lock)和表獨佔寫鎖(Table Write Lock)。鎖模式的相容性如表20-1所示。 表20-1 MySQL中的表鎖相容性請求鎖模式 是否相容 當前鎖模式 | None | 讀鎖 | 寫鎖 |
讀鎖 | 是 | 是 | 否 |
寫鎖 | 是 | 否 | 否 |
session_1 | session_2 |
獲得表film_text的WRITE鎖定 mysql> lock table film_text write; Query OK, 0 rows affected (0.00 sec) | |
當前session對鎖定表的查詢、更新、插入操作都可以執行: mysql> select film_id,title from film_text where film_id = 1001; +---------+-------------+ | film_id | title | +---------+-------------+ | 1001 | Update Test | +---------+-------------+ 1 row in set (0.00 sec) mysql> insert into film_text (film_id,title) values(1003,'Test'); Query OK, 1 row affected (0.00 sec) mysql> update film_text set title = 'Test' where film_id = 1001; Query OK, 1 row affected (0.00 sec) Rows matched: 1 Changed: 1 Warnings: 0 | 其他session對鎖定表的查詢被阻塞,需要等待鎖被釋放: mysql> select film_id,title from film_text where film_id = 1001; 等待 |
釋放鎖: mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) | 等待 |
Session2獲得鎖,查詢返回: mysql> select film_id,title from film_text where film_id = 1001; +---------+-------+ | film_id | title | +---------+-------+ | 1001 | Test | +---------+-------+ 1 row in set (57.59 sec) |
如何加表鎖
MyISAM在執行查詢語句(SELECT)前,會自動給涉及的所有表加讀鎖,在執行更新操作(UPDATE、DELETE、INSERT等)前,會自動給涉及的表加寫鎖,這個過程並不需要使用者干預,因此,使用者一般不需要直接用LOCK TABLE命令給MyISAM表顯式加鎖。在本書的示例中,顯式加鎖基本上都是為了方便而已,並非必須如此。 給MyISAM表顯示加鎖,一般是為了在一定程度模擬事務操作,實現對某一時間點多個表的一致性讀取。例如,有一個訂單表orders,其中記錄有各訂單的總金額total,同時還有一個訂單明細表order_detail,其中記錄有各訂單每一產品的金額小計 subtotal,假設我們需要檢查這兩個表的金額合計是否相符,可能就需要執行如下兩條SQL: Select sum(total) from orders; Select sum(subtotal) from order_detail; 這時,如果不先給兩個表加鎖,就可能產生錯誤的結果,因為第一條語句執行過程中,order_detail表可能已經發生了改變。因此,正確的方法應該是: Lock tables orders read local, order_detail read local; Select sum(total) from orders; Select sum(subtotal) from order_detail; Unlock tables; 要特別說明以下兩點內容。 ¡ 上面的例子在LOCK TABLES時加了“local”選項,其作用就是在滿足MyISAM表併發插入條件的情況下,允許其他使用者在表尾併發插入記錄,有關MyISAM表的併發插入問題,在後面的章節中還會進一步介紹。 ¡ 在用LOCK TABLES給表顯式加表鎖時,必須同時取得所有涉及到表的鎖,並且MySQL不支援鎖升級。也就是說,在執行LOCK TABLES後,只能訪問顯式加鎖的這些表,不能訪問未加鎖的表;同時,如果加的是讀鎖,那麼只能執行查詢操作,而不能執行更新操作。其實, 在自動加鎖的情況下也基本如此,MyISAM總是一次獲得SQL語句所需要的全部鎖。這也正是MyISAM表不會出現死鎖(Deadlock Free)的原因。 在如表20-3所示的例子中,一個session使用LOCK TABLE命令給表film_text加了讀鎖,這個session可以查詢鎖定表中的記錄,但更新或訪問其他表都會提示錯誤;同時,另外一個session可以查詢表中的記錄,但更新就會出現鎖等待。 表20-3 MyISAM儲存引擎的讀阻塞寫例子session_1 | session_2 |
獲得表film_text的READ鎖定 mysql> lock table film_text read; Query OK, 0 rows affected (0.00 sec) | |
當前session可以查詢該表記錄 mysql> select film_id,title from film_text where film_id = 1001; +---------+------------------+ | film_id | title | +---------+------------------+ | 1001 | ACADEMY DINOSAUR | +---------+------------------+ 1 row in set (0.00 sec) | 其他session也可以查詢該表的記錄 mysql> select film_id,title from film_text where film_id = 1001; +---------+------------------+ | film_id | title | +---------+------------------+ | 1001 | ACADEMY DINOSAUR | +---------+------------------+ 1 row in set (0.00 sec) |
當前session不能查詢沒有鎖定的表 mysql> select film_id,title from film where film_id = 1001; ERROR 1100 (HY000): Table 'film' was not locked with LOCK TABLES | 其他session可以查詢或者更新未鎖定的表 mysql> select film_id,title from film where film_id = 1001; +---------+---------------+ | film_id | title | +---------+---------------+ | 1001 | update record | +---------+---------------+ 1 row in set (0.00 sec) mysql> update film set title = 'Test' where film_id = 1001; Query OK, 1 row affected (0.04 sec) Rows matched: 1 Changed: 1 Warnings: 0 |
當前session中插入或者更新鎖定的表都會提示錯誤: mysql> insert into film_text (film_id,title) values(1002,'Test'); ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated mysql> update film_text set title = 'Test' where film_id = 1001; ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated | 其他session更新鎖定表會等待獲得鎖: mysql> update film_text set title = 'Test' where film_id = 1001; 等待 |
釋放鎖 mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) | 等待 |
Session獲得鎖,更新操作完成: mysql> update film_text set title = 'Test' where film_id = 1001; Query OK, 1 row affected (1 min 0.71 sec) Rows matched: 1 Changed: 1 Warnings: 0 |
併發插入(Concurrent Inserts)
上文提到過MyISAM表的讀和寫是序列的,但這是就總體而言的。在一定條件下,MyISAM表也支援查詢和插入操作的併發進行。 MyISAM儲存引擎有一個系統變數concurrent_insert,專門用以控制其併發插入的行為,其值分別可以為0、1或2。 l 當concurrent_insert設定為0時,不允許併發插入。 l 當concurrent_insert設定為1時,如果MyISAM表中沒有空洞(即表的中間沒有被刪除的行),MyISAM允許在一個程序讀表的同時,另一個程序從表尾插入記錄。這也是MySQL的預設設定。 l 當concurrent_insert設定為2時,無論MyISAM表中有沒有空洞,都允許在表尾併發插入記錄。 在如表20-4所示的例子中,session_1獲得了一個表的READ LOCAL鎖,該執行緒可以對錶進行查詢操作,但不能對錶進行更新操作;其他的執行緒(session_2),雖然不能對錶進行刪除和更新操作,但卻可以對該表進行併發插入操作,這裡假設該表中間不存在空洞。 表20-4 MyISAM儲存引擎的讀寫(INSERT)併發例子session_1 | session_2 |
獲得表film_text的READ LOCAL鎖定 mysql> lock table film_text read local; Query OK, 0 rows affected (0.00 sec) | |
當前session不能對鎖定表進行更新或者插入操作: mysql> insert into film_text (film_id,title) values(1002,'Test'); ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated mysql> update film_text set title = 'Test' where film_id = 1001; ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated | 其他session可以進行插入操作,但是更新會等待: mysql> insert into film_text (film_id,title) values(1002,'Test'); Query OK, 1 row affected (0.00 sec) mysql> update film_text set title = 'Update Test' where film_id = 1001; 等待 |
當前session不能訪問其他session插入的記錄: mysql> select film_id,title from film_text where film_id = 1002; Empty set (0.00 sec) | |
釋放鎖: mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) | 等待 |
當前session解鎖後可以獲得其他session插入的記錄: mysql> select film_id,title from film_text where film_id = 1002; +---------+-------+ | film_id | title | +---------+-------+ | 1002 | Test | +---------+-------+ 1 row in set (0.00 sec) | Session2獲得鎖,更新操作完成: mysql> update film_text set title = 'Update Test' where film_id = 1001; Query OK, 1 row affected (1 min 17.75 sec) Rows matched: 1 Changed: 1 Warnings: 0 |
MyISAM的鎖排程
前面講過,MyISAM儲存引擎的讀鎖和寫鎖是互斥的,讀寫操作是序列的。那麼,一個程序請求某個 MyISAM表的讀鎖,同時另一個程序也請求同一表的寫鎖,MySQL如何處理呢?答案是 寫程序先獲得鎖。不僅如此,即使讀請求先到鎖等待佇列,寫請求後到,寫鎖也會插到讀鎖請求之前!這是因為MySQL認為寫請求一般比讀請求要重要。 這也正是MyISAM表不太適合於有大量更新操作和查詢操作應用的原因,因為,大量的更新操作會造成查詢操作很難獲得讀鎖,從而可能永遠阻塞。這種情況有時可能會變得非常糟糕!幸好我們可以通過一些設定來調節MyISAM 的排程行為。 ¡ 通過指定啟動引數low-priority-updates,使MyISAM引擎預設給予讀請求以優先的權利。 ¡ 通過執行命令SET LOW_PRIORITY_UPDATES=1,使該連線發出的更新請求優先順序降低。 ¡ 通過指定INSERT、UPDATE、DELETE語句的LOW_PRIORITY屬性,降低該語句的優先順序。 雖然上面3種方法都是要麼更新優先,要麼查詢優先的方法,但還是可以用其來解決查詢相對重要的應用(如使用者登入系統)中,讀鎖等待嚴重的問題。 另外,MySQL也提供了一種折中的辦法來調節讀寫衝突,即給系統引數 max_write_lock_count設定一個合適的值,當一個表的讀鎖達到這個值後,MySQL就暫時將寫請求的優先順序降低,給讀程序一定獲得鎖的機會。 上面已經討論了寫優先排程機制帶來的問題和解決辦法。 這裡還要強調一點:一些需要長時間執行的查詢操作,也會使寫程序“餓死”!因此,應用中應儘量避免出現長時間執行的查詢操作,不要總想用一條SELECT語句來解決問題,因為這種看似巧妙的SQL語句,往往比較複雜,執行時間較長,在可能的情況下可以通過使用中間表等措施對SQL語句做一定的“分解”,使每一步查詢都能在較短時間完成,從而減少鎖衝突。如果複雜查詢不可避免,應儘量安排在資料庫空閒時段執行,比如一些定期統計可以安排在夜間執行。 InnoDB鎖問題 InnoDB與MyISAM的最大不同有兩點:一是支援事務(TRANSACTION);二是採用了行級鎖。行級鎖與表級鎖本來就有許多不同之處,另外,事務的引入也帶來了一些新問題。下面我們先介紹一點背景知識,然後詳細討論InnoDB的鎖問題。背景知識
1.事務(Transaction)及其ACID屬性
事務是由一組SQL語句組成的邏輯處理單元,事務具有以下4個屬性,通常簡稱為事務的ACID屬性。 l 原子性(Atomicity):事務是一個原子操作單元,其對資料的修改,要麼全都執行,要麼全都不執行。 l 一致性(Consistent):在事務開始和完成時,資料都必須保持一致狀態。這意味著所有相關的資料規則都必須應用於事務的修改,以保持資料的完整性;事務結束時,所有的內部資料結構(如B樹索引或雙向連結串列)也都必須是正確的。 l 隔離性(Isolation):資料庫系統提供一定的隔離機制,保證事務在不受外部併發操作影響的“獨立”環境執行。這意味著事務處理過程中的中間狀態對外部是不可見的,反之亦然。 l 永續性(Durable):事務完成之後,它對於資料的修改是永久性的,即使出現系統故障也能夠保持。 銀行轉帳就是事務的一個典型例子。2.併發事務處理帶來的問題
相對於序列處理來說,併發事務處理能大大增加資料庫資源的利用率,提高資料庫系統的事務吞吐量,從而可以支援更多的使用者。但併發事務處理也會帶來一些問題,主要包括以下幾種情況。 l 更新丟失(Lost Update):當兩個或多個事務選擇同一行,然後基於最初選定的值更新該行時,由於每個事務都不知道其他事務的存在,就會發生丟失更新問題--最後的更新覆蓋了由其他事務所做的更新。例如,兩個編輯人員製作了同一文件的電子副本。每個編輯人員獨立地更改其副本,然後儲存更改後的副本,這樣就覆蓋了原始文件。最後儲存其更改副本的編輯人員覆蓋另一個編輯人員所做的更改。如果在一個編輯人員完成並提交事務之前,另一個編輯人員不能訪問同一檔案,則可避免此問題。 l 髒讀(Dirty Reads):一個事務正在對一條記錄做修改,在這個事務完成並提交前,這條記錄的資料就處於不一致狀態;這時,另一個事務也來讀取同一條記錄,如果不加控制,第二個事務讀取了這些“髒”資料,並據此做進一步的處理,就會產生未提交的資料依賴關係。這種現象被形象地叫做"髒讀"。 l 不可重複讀(Non-Repeatable Reads):一個事務在讀取某些資料後的某個時間,再次讀取以前讀過的資料,卻發現其讀出的資料已經發生了改變、或某些記錄已經被刪除了!這種現象就叫做“不可重複讀”。 l 幻讀(Phantom Reads):一個事務按相同的查詢條件重新讀取以前檢索過的資料,卻發現其他事務插入了滿足其查詢條件的新資料,這種現象就稱為“幻讀”。3.事務隔離級別
在上面講到的併發事務處理帶來的問題中 ,“更新丟失”通常是應該完全避免的。但防止更新丟失,並不能單靠資料庫事務控制器來解決,需要應用程式對要更新的資料加必要的鎖來解決,因此,防止更新丟失應該是應用的責任。 “髒讀”、“不可重複讀”和“幻讀”,其實都是資料庫讀一致性問題,必須由資料庫提供一定的事務隔離機制來解決。資料庫實現事務隔離的方式,基本上可分為以下兩種。 l 一種是在讀取資料前,對其加鎖,阻止其他事務對資料進行修改。 l 另一種是不用加任何鎖,通過一定機制生成一個數據請求時間點的一致性資料快照(Snapshot),並用這個快照來提供一定級別(語句級或事務級)的一致性讀取。從使用者的角度來看,好像是資料庫可以提供同一資料的多個版本,因此,這種技術叫做資料 多版本併發控制(MultiVersion Concurrency Control,簡稱MVCC或MCC),也經常稱為多版本資料庫。 資料庫的事務隔離越嚴格,併發副作用越小,但付出的代價也就越大,因為事務隔離實質上就是使事務在一定程度上 “序列化”進行,這顯然與“併發”是矛盾的。同時,不同的應用對讀一致性和事務隔離程度的要求也是不同的,比如許多應用對“不可重複讀”和“幻讀”並不敏感,可能更關心資料併發訪問的能力。 為了解決“隔離”與“併發”的矛盾,ISO/ANSI SQL92定義了4個事務隔離級別,每個級別的隔離程度不同,允許出現的副作用也不同,應用可以根據自己的業務邏輯要求,通過選擇不同的隔離級別來平衡 “隔離”與“併發”的矛盾。表20-5很好地概括了這4個隔離級別的特性。 表20-5 4種隔離級別比較讀資料一致性及允許的併發副作用 隔離級別 | 讀資料一致性 | 髒讀 | 不可重複讀 | 幻讀 |
未提交讀(Read uncommitted) | 最低級別,只能保證不讀取物理上損壞的資料 | 是 | 是 | 是 |
已提交度(Read committed) | 語句級 | 否 | 是 | 是 |
可重複讀(Repeatable read) | 事務級 | 否 | 否 | 是 |
可序列化(Serializable) | 最高級別,事務級 | 否 | 否 | 否 |
獲取InnoDB行鎖爭用情況
可以通過檢查InnoDB_row_lock狀態變數來分析系統上的行鎖的爭奪情況: mysql> show status like 'innodb_row_lock%'; +-------------------------------+-------+ | Variable_name | Value | +-------------------------------+-------+ | InnoDB_row_lock_current_waits | 0 | | InnoDB_row_lock_time | 0 | | InnoDB_row_lock_time_avg | 0 | | InnoDB_row_lock_time_max | 0 | | InnoDB_row_lock_waits | 0 | +-------------------------------+-------+ 5 rows in set (0.01 sec) 如果發現鎖爭用比較嚴重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比較高,還可以通過設定InnoDB Monitors來進一步觀察發生鎖衝突的表、資料行等,並分析鎖爭用的原因。 具體方法如下: mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB; Query OK, 0 rows affected (0.14 sec) 然後就可以用下面的語句來進行檢視: mysql> Show innodb status\G; *************************** 1. row *************************** Type: InnoDB Name: Status: … … ------------ TRANSACTIONS ------------ Trx id counter 0 117472192 Purge done for trx's n:o < 0 117472190 undo n:o < 0 0 History list length 17 Total number of lock structs in row lock hash table 0 LIST OF TRANSACTIONS FOR EACH SESSION: ---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456 MySQL thread id 200610, query id 291197 localhost root ---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936 MySQL thread id 199285, query id 291199 localhost root Show innodb status … 監視器可以通過發出下列語句來停止檢視: mysql> DROP TABLE innodb_monitor; Query OK, 0 rows affected (0.05 sec) 設定監視器後,在SHOW INNODB STATUS的顯示內容中,會有詳細的當前鎖等待的資訊,包括表名、鎖型別、鎖定記錄的情況等,便於進行進一步的分析和問題的確定。開啟監視器以後,預設情況下每15秒會向日志中記錄監控的內容,如果長時間開啟會導致.err檔案變得非常的巨大,所以使用者在確認問題原因之後,要記得刪除監控表以關閉監視器,或者通過使用“--console”選項來啟動伺服器以關閉寫日誌檔案。InnoDB的行鎖模式及加鎖方法
InnoDB實現了以下兩種型別的行鎖。 l 共享鎖(S):允許一個事務去讀一行,阻止其他事務獲得相同資料集的排他鎖。 l 排他鎖(X):允許獲得排他鎖的事務更新資料,阻止其他事務取得相同資料集的共享讀鎖和排他寫鎖。 另外,為了允許行鎖和表鎖共存,實現多粒度鎖機制,InnoDB還有兩種內部使用的意向鎖(Intention Locks),這兩種意向鎖都是表鎖。 l 意向共享鎖(IS):事務打算給資料行加行共享鎖,事務在給一個數據行加共享鎖前必須先取得該表的IS鎖。 l 意向排他鎖(IX):事務打算給資料行加行排他鎖,事務在給一個數據行加排他鎖前必須先取得該表的IX鎖。 上述鎖模式的相容情況具體如表20-6所示。 表20-6 InnoDB行鎖模式相容性列表請求鎖模式 是否相容 當前鎖模式 | X | IX | S | IS |
X | 衝突 | 衝突 | 衝突 | 衝突 |
IX | 衝突 | 相容 | 衝突 | 相容 |
S | 衝突 | 衝突 | 相容 | 相容 |
IS | 衝突 | 相容 | 相容 | 相容 |
session_1 | session_2 |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) | mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) |
當前session對actor_id=178的記錄加share mode 的共享鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 lock in share mode; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.01 sec) | |
其他session仍然可以查詢記錄,並也可以對該記錄加share mode的共享鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 lock in share mode; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.01 sec) | |
當前session對鎖定的記錄進行更新操作,等待鎖: mysql> update actor set last_name = 'MONROE T' where actor_id = 178; 等待 | |
其他session也對該記錄進行更新操作,則會導致死鎖退出: mysql> update actor set last_name = 'MONROE T' where actor_id = 178; ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction | |
獲得鎖後,可以成功更新: mysql> update actor set last_name = 'MONROE T' where actor_id = 178; Query OK, 1 row affected (17.67 sec) Rows matched: 1 Changed: 1 Warnings: 0 |
session_1 | session_2 |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) | mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) |
當前session對actor_id=178的記錄加for update的排它鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) | |
其他session可以查詢該記錄,但是不能對該記錄加共享鎖,會等待獲得鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE | +----------+------------+-----------+ 1 row in set (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; 等待 | |
當前session可以對鎖定的記錄進行更新操作,更新後釋放鎖: mysql> update actor set last_name = 'MONROE T' where actor_id = 178; Query OK, 1 row affected (0.00 sec) Rows matched: 1 Changed: 1 Warnings: 0 mysql> commit; Query OK, 0 rows affected (0.01 sec) | |
其他session獲得鎖,得到其他session提交的記錄: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178 | LISA | MONROE T | +----------+------------+-----------+ 1 row in set (9.59 sec) |
InnoDB行鎖實現方式
InnoDB行鎖是通過給索引上的索引項加鎖來實現的,這一點MySQL與Oracle不同,後者是 通過在資料塊中對相應資料行加鎖來實現的。InnoDB這種行鎖實現特點意味著:只有通過索引條件檢索資料,InnoDB才使用行級鎖,否則,InnoDB將使用表鎖! 在實際應用中,要特別注意InnoDB行鎖的這一特性,不然的話,可能導致大量的鎖衝突,從而影響併發效能。下面通過一些實際例子來加以說明。 (1)在不通過索引條件查詢的時候,InnoDB確實使用的是表鎖,而不是行鎖。 在如表20-9所示的例子中,開始tab_no_index表沒有索引: mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb; Query OK, 0 rows affected (0.15 sec) mysql> insert into tab_no_index values(1,'1'),(2,'2'),(3,'3'),(4,'4'); Query OK, 4 rows affected (0.00 sec) Records: 4 Duplicates: 0 Warnings: 0 表20-9 InnoDB儲存引擎的表在不使用索引時使用表鎖例子session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_no_index where id = 1 ; +------+------+ | id | name | +------+------+ | 1 | 1 | +------+------+ 1 row in set (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_no_index where id = 2 ; +------+------+ | id | name | +------+------+ | 2 | 2 | +------+------+ 1 row in set (0.00 sec) |
mysql> select * from tab_no_index where id = 1 for update; +------+------+ | id | name | +------+------+ | 1 | 1 | +------+------+ 1 row in set (0.00 sec) | |
mysql> select * from tab_no_index where id = 2 for update; 等待 |
session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 1 ; +------+------+ | id | name | +------+------+ | 1 | 1 | +------+------+ 1 row in set (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 2 ; +------+------+ | id | name | +------+------+ | 2 | 2 | +------+------+ 1 row in set (0.00 sec) |
mysql> select * from tab_with_index where id = 1 for update; +------+------+ | id | name | +------+------+ | 1 | 1 | +------+------+ 1 row in set (0.00 sec) | |
mysql> select * from tab_with_index where id = 2 for update; +------+------+ | id | name | +------+------+ | 2 | 2 | +------+------+ 1 row in set (0.00 sec) |
session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) |
mysql> select * from tab_with_index where id = 1 and name = '1' for update; +------+------+ | id | name | +------+------+ | 1 | 1 | +------+------+ 1 row in set (0.00 sec) | |
雖然session_2訪問的是和session_1不同的記錄,但是因為使用了相同的索引,所以需要等待鎖: mysql> select * from tab_with_index where id = 1 and name = '4' for update; 等待 |
session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) |
mysql> select * from tab_with_index where id = 1 for update; +------+------+ | id | name | +------+------+ | 1 | 1 | | 1 | 4 | +------+------+ 2 rows in set (0.00 sec) | |
Session_2使用name的索引訪問記錄,因為記錄沒有被索引,所以可以獲得鎖: mysql> select * from tab_with_index where name = '2' for update; +------+------+ | id | name | +------+------+ | 2 | 2 | +------+------+ 1 row in set (0.00 sec) | |
由於訪問的記錄已經被session_1鎖定,所以等待獲得鎖。: mysql> select * from tab_with_index where name = '4' for update; |
間隙鎖(Next-Key鎖)
當我們用範圍條件而不是相等條件檢索資料,並請求共享或排他鎖時,InnoDB會給符合條件的已有資料記錄的索引項加鎖;對於鍵值在條件範圍內但並不存在的記錄,叫做“間隙(GAP)”,InnoDB也會對這個“間隙”加鎖,這種鎖機制就是所謂的間隙鎖(Next-Key鎖)。 舉例來說,假如emp表中只有101條記錄,其empid的值分別是 1,2,...,100,101,下面的SQL: Select * from emp where empid > 100 for update; 是一個範圍條件的檢索,InnoDB不僅會對符合條件的empid值為101的記錄加鎖,也會對empid大於101(這些記錄並不存在)的“間隙”加鎖。 InnoDB使用間隙鎖的目的,一方面是為了防止幻讀,以滿足相關隔離級別的要求,對於上面的例子,要是不使用間隙鎖,如果其他事務插入了empid大於100的任何記錄,那麼本事務如果再次執行上述語句,就會發生幻讀;另外一方面,是為了滿足其恢復和複製的需要。有關其恢復和複製對鎖機制的影響,以及不同隔離級別下InnoDB使用間隙鎖的情況,在後續的章節中會做進一步介紹。 很顯然,在使用範圍條件檢索並鎖定記錄時,InnoDB這種加鎖機制會阻塞符合條件範圍內鍵值的併發插入,這往往會造成嚴重的鎖等待。因此,在實際應用開發中,尤其是併發插入比較多的應用,我們要儘量優化業務邏輯,儘量使用相等條件來訪問更新資料,避免使用範圍條件。 還要特別說明的是,InnoDB除了通過範圍條件加鎖時使用間隙鎖外,如果使用相等條件請求給一個不存在的記錄加鎖,InnoDB也會使用間隙鎖! 在如表20-13所示的例子中,假如emp表中只有101條記錄,其empid的值分別是1,2,......,100,101。 表20-13 InnoDB儲存引擎的間隙鎖阻塞例子session_1 | session_2 |
mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) | mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) |
當前session對不存在的記錄加for update的鎖: mysql> select * from emp where empid = 102 for update; Empty set (0.00 sec) | |
這時,如果其他session插入empid為102的記錄(注意:這條記錄並不存在),也會出現鎖等待: mysql>insert into emp(empid,...) values(102,...); 阻塞等待 | |
Session_1 執行rollback: mysql> rollback; Query OK, 0 rows affected (13.04 sec) | |
由於其他session_1回退後釋放了Next-Key鎖,當前session可以獲得鎖併成功插入記錄: mysql>insert into emp(empid,...) values(102,...); Query OK, 1 row affected (13.35 sec) |
恢復和複製的需要,對InnoDB鎖機制的影響
MySQL通過BINLOG錄執行成功的INSERT、UPDATE、DELETE等更新資料的SQL語句,並由此實現MySQL資料庫的恢復和主從複製(可以參見本書“管理篇”的介紹)。MySQL的恢復機制(複製其實就是在Slave Mysql不斷做基於BINLOG的恢復)有以下特點。 l 一是MySQL的恢復是SQL語句級的,也就是重新執行BINLOG中的SQL語句。這與Oracle資料庫不同,Oracle是基於資料庫檔案塊的。 l 二是MySQL的Binlog是按照事務提交的先後順序記錄的,恢復也是按這個順序進行的。這點也與Oralce不同,Oracle是按照系統更新號(System Change Number,SCN)來恢復資料的,每個事務開始時,Oracle都會分配一個全域性唯一的SCN,SCN的順序與事務開始的時間順序是一致的。 從上面兩點可知,MySQL的恢復機制要求:在一個事務未提交前,其他併發事務不能插入滿足其鎖定條件的任何記錄,也就是不允許出現幻讀,這已經超過了ISO/ANSI SQL92“可重複讀”隔離級別的要求,實際上是要求事務要序列化。這也是許多情況下,InnoDB要用到間隙鎖的原因,比如在用範圍條件更新記錄時,無論在Read Commited或是Repeatable Read隔離級別下,InnoDB都要使用間隙鎖,但這並不是隔離級別要求的,有關InnoDB在不同隔離級別下加鎖的差異在下一小節還會介紹。 另外,對於“insert into target_tab select * from source_tab where ...”和“create table new_tab ...select ... From source_tab where ...(CTAS)”這種SQL語句,使用者並沒有對source_tab做任何更新操作,但MySQL對這種SQL語句做了特別處理。先來看如表20-14的例子。 表20-14 CTAS操作給原表加鎖例子session_1 | session_2 |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = '1'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 1 | 1 | | 5 | 1 | 1 | | 6 | 1 | 1 | | 7 | 1 | 1 | | 8 | 1 | 1 | +----+------+----+ 5 rows in set (0.00 sec) | mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = '1'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 1 | 1 | | 5 | 1 | 1 | | 6 | 1 | 1 | | 7 | 1 | 1 | | 8 | 1 | 1 | +----+------+----+ 5 rows in set (0.00 sec) |
mysql> insert into target_tab select d1,name from source_tab where name = '1'; Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 | |
mysql> update source_tab set name = '1' where name = '8'; 等待 | |
commit; | |
返回結果 commit; |
session_1 | session_2 |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql>set innodb_locks_unsafe_for_binlog='on' Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = '1'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 1 | 1 | | 5 | 1 | 1 | | 6 | 1 | 1 | | 7 | 1 | 1 | | 8 | 1 | 1 | +----+------+----+ 5 rows in set (0.00 sec) | mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = '1'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 1 | 1 | | 5 | 1 | 1 | | 6 | 1 | 1 | | 7 | 1 | 1 | | 8 | 1 | 1 | +----+------+----+ 5 rows in set (0.00 sec) |
mysql> insert into target_tab select d1,name from source_tab where name = '1'; Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 | |
session_1未提交,可以對session_1的select的記錄進行更新操作。 mysql> update source_tab set name = '8' where name = '1'; Query OK, 5 rows affected (0.00 sec) Rows matched: 5 Changed: 5 Warnings: 0 mysql> select * from source_tab where name = '8'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 8 | 1 | | 5 | 8 | 1 | | 6 | 8 | 1 | | 7 | 8 | 1 | | 8 | 8 | 1 | +----+------+----+ 5 rows in set (0.00 sec) | |
更新操作先提交 mysql> commit; Query OK, 0 rows affected (0.05 sec) | |
插入操作後提交 mysql> commit; Query OK, 0 rows affected (0.07 sec) | |
此時檢視資料,target_tab中可以插入source_tab更新前的結果,這符合應用邏輯: mysql> select * from source_tab where name = '8'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 8 | 1 | | 5 | 8 | 1 | | 6 | 8 | 1 | | 7 | 8 | 1 | | 8 | 8 | 1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> select * from target_tab; +------+------+ | id | name | +------+------+ | 4 | 1.00 | | 5 | 1.00 | | 6 | 1.00 | | 7 | 1.00 | | 8 | 1.00 | +------+------+ 5 rows in set (0.00 sec) | mysql> select * from tt1 where name = '1'; Empty set (0.00 sec) mysql> select * from source_tab where name = '8'; +----+------+----+ | d1 | name | d2 | +----+------+----+ | 4 | 8 | 1 | | 5 | 8 | 1 | | 6 | 8 | 1 | | 7 | 8 | 1 | | 8 | 8 | 1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> select * from target_tab; +------+------+ | id | name | +------+------+ | 4 | 1.00 | | 5 | 1.00 | | 6 | 1.00 | | 7 | 1.00 | | 8 | 1.00 | +------+------+ 5 rows in set (0.00 sec) |
InnoDB在不同隔離級別下的一致性讀及鎖的差異
前面講過,鎖和多版本資料是InnoDB實現一致性讀和ISO/ANSI SQL92隔離級別的手段,因此,在不同的隔離級別下,InnoDB處理SQL時採用的一致性讀策略和需要的鎖是不同的。同時,資料恢復和複製機制的特點,也對一些SQL的一致性讀策略和鎖策略有很大影響。將這些特性歸納成如表20-16所示的內容,以便讀者查閱。 表20-16 InnoDB儲存引擎中不同SQL在不同隔離級別下鎖比較隔離級別 一致性讀和鎖 SQL | Read Uncommited | Read Commited | Repeatable Read | Serializable | |
SQL | 條件 | ||||
select | 相等 | None locks | Consisten read/None lock | Consisten read/None lock | Share locks |
範圍 | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key | |
update | 相等 | exclusive locks | exclusive locks | exclusive locks | Exclusive locks |
範圍 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
Insert | N/A | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
replace | 無鍵衝突 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
鍵衝突 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
delete | 相等 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
範圍 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
Select ... from ... Lock in share mode | 相等 | Share locks | Share locks | Share locks | Share locks |
範圍 | Share locks | Share locks | Share Next-Key | Share Next-Key | |
Select * from ... For update | 相等 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
範圍 | exclusive locks | Share locks | exclusive next-key | exclusive next-key | |
Insert into ... Select ... (指源表鎖) | innodb_locks_unsafe_for_binlog=off | Share Next-Key | Share Next-Key | Share Next-Key | Share Next-Key |
innodb_locks_unsafe_for_binlog=on | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key | |
create table ... Select ... (指源表鎖) | innodb_locks_unsafe_for_binlog=off | Share Next-Key | Share Next-Key | Share Next-Key | Share Next-Key |
innodb_locks_unsafe_for_binlog=on | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key |
什麼時候使用表鎖
對於InnoDB表,在絕大部分情況下都應該使用行級鎖,因為事務和行鎖往往是我們之所以選擇InnoDB表的理由。但在個別特殊事務中,也可以考慮使用表級鎖。 ¡ 第一種情況是:事務需要更新大部分或全部資料,表又比較大,如果使用預設的行鎖,不僅這個事務執行效率低,而且可能造成其他事務長時間鎖等待和鎖衝突,這種情況下可以考慮使用表鎖來提高該事務的執行速度。 ¡ 第二種情況是:事務涉及多個表,比較複雜,很可能引起死鎖,造成大量事務回滾。這種情況也可以考慮一次性鎖定事務涉及的表,從而避免死鎖、減少資料庫因事務回滾帶來的開銷。 當然,應用中這兩種事務不能太多,否則,就應該考慮使用MyISAM表了。 在InnoDB下,使用表鎖要注意以下兩點。 (1)使用LOCK TABLES雖然可以給InnoDB加表級鎖,但必須說明的是,表鎖不是由InnoDB儲存引擎層管理的,而是由其上一層──MySQL Server負責的,僅當autocommit=0、innodb_table_locks=1(預設設定)時,InnoDB層才能知道MySQL加的表鎖,MySQL Server也才能感知InnoDB加的行鎖,這種情況下,InnoDB才能自動識別涉及表級鎖的死鎖;否則,InnoDB將無法自動檢測並處理這種死鎖。有關死鎖,下一小節還會繼續討論。 (2)在用 LOCK TABLES對InnoDB表加鎖時要注意,要將AUTOCOMMIT設為0,否則MySQL不會給表加鎖;事務結束前,不要用UNLOCK TABLES釋放表鎖,因為UNLOCK TABLES會隱含地提交事務;COMMIT或ROLLBACK並不能釋放用LOCK TABLES加的表級鎖,必須用UNLOCK TABLES釋放表鎖。正確的方式見如下語句: 例如,如果需要寫表t1並從表t讀,可以按如下做: SET AUTOCOMMIT=0; LOCK TABLES t1 WRITE, t2 READ, ...; [do something with tables t1 and t2 here]; COMMIT; UNLOCK TABLES;關於死鎖
上文講過,MyISAM表鎖是deadlock free的,這是因為MyISAM總是一次獲得所需的全部鎖,要麼全部滿足,要麼等待,因此不會出現死鎖。但在InnoDB中,除單個SQL組成的事務外,鎖是逐步獲得的,這就決定了在InnoDB中發生死鎖是可能的。如表20-17所示的就是一個發生死鎖的例子。 表20-17 InnoDB儲存引擎中的死鎖例子session_1 | session_2 |
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from table_1 where where id=1 for update; ... 做一些其他處理... | mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from table_2 where id=1 for update; ... |
select * from table_2 where id =1 for update; 因session_2已取得排他鎖,等待 | 做一些其他處理... |
mysql> select * from table_1 where where id=1 for update; 死鎖 |
session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) |
mysql> select first_name,last_name from actor where actor_id = 1 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | PENELOPE | GUINESS | +------------+-----------+ 1 row in set (0.00 sec) | |
mysql> insert into country (country_id,country) values(110,'Test'); Query OK, 1 row affected (0.00 sec) | |
mysql> insert into country (country_id,country) values(110,'Test'); 等待 | |
mysql> select first_name,last_name from actor where actor_id = 1 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | PENELOPE | GUINESS | +------------+-----------+ 1 row in set (0.00 sec) | |
mysql> insert into country (country_id,country) values(110,'Test'); ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction |
session_1 | session_2 |
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) | mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) |
mysql> select first_name,last_name from actor where actor_id = 1 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | PENELOPE | GUINESS | +------------+-----------+ 1 row in set (0.00 sec) | |
mysql> select first_name,last_name from actor where actor_id = 3 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | ED | CHASE | +------------+-----------+ 1 row in set (0.00 sec) | |
mysql> select first_name,last_name from actor where actor_id = 3 for update; 等待 | |
mysql> select first_name,last_name from actor where actor_id = 1 for update; ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction | |
mysql> select first_name,last_name from actor where actor_id = 3 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | ED | CHASE | +------------+-----------+ 1 row in set (4.71 sec) |
session_1 | session_2 |
mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) | mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) |
當前session對不存在的記錄加for update的鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update; Empty set (0.00 sec) | |
其他session也可以對不存在的記錄加for update的鎖: mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update; Empty set (0.00 sec) | |
因為其他session也對該記錄加了鎖,所以當前的插入會等待: mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom'); 等待 | |
因為其他session已經對記錄進行了更新,這時候再插入記錄就會提示死鎖並退出: mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom'); ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction | |
由於其他session已經退出,當前session可以獲得鎖併成功插入記錄: mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom'); Query OK, 1 row affected (13.35 sec) |
session_1 | session_2 | session_3 |
mysql> select @@tx_isolation; +----------------+ | @@tx_isolation | +----------------+ | READ-COMMITTED | +----------------+ 1 row in set (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.01 sec) | mysql> select @@tx_isolation; +----------------+ | @@tx_isolation | +----------------+ | READ-COMMITTED | +----------------+ 1 row in set (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.01 sec) | mysql> select @@tx_isolation; +----------------+ | @@tx_isolation | +----------------+ | READ-COMMITTED | +----------------+ 1 row in set (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.01 sec) |
Session_1獲得for update的共享鎖: mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update; Empty set (0.00 sec) | 由於記錄不存在,session_2也可以獲得for update的共享鎖: mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update; Empty set (0.00 sec) | |
Session_1可以成功插入記錄: mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom'); Query OK, 1 row affected (0.00 sec) | ||
Session_2插入申請等待獲得鎖: mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom'); 等待 | ||
Session_1成功提交: mysql> commit; Query OK, 0 rows affected (0.04 sec) | ||
Session_2獲得鎖,發現插入記錄主鍵重,這個時候丟擲了異常,但是並沒有釋放共享鎖: mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom'); ERROR 1062 (23000): Duplicate entry '201' for key 'PRIMARY' | ||
Session_3申請獲得共享鎖,因為session_2已經鎖定該記錄,所以session_3需要等待: mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update; 等待 | ||
這個時候,如果session_2直接對記錄進行更新操作,則會丟擲死鎖的異常: mysql> update actor set last_name='Lan' where actor_id = 201; ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction | ||
Session_2釋放鎖後,session_3獲得鎖: mysql> select first_name, last_name from actor where actor_id = 201 for update; +------------+-----------+ | first_name | last_name | +------------+-----------+ | Lisa | Tom | +------------+-----------+ 1 row in set (31.12 sec) |
小結 本章重點介紹了MySQL中MyISAM表級鎖和InnoDB行級鎖的實現特點,並討論了兩種儲存引擎經常遇到的鎖問題和解決辦法。 對於MyISAM的表鎖,主要討論了以下幾點: (1)共享讀鎖(S)之間是相容的,但共享讀鎖(S)與排他寫鎖(X)之間,以及排他寫鎖(X)之間是互斥的,也就是說讀和寫是序列的。 (2)在一定條件下,MyISAM允許查詢和插入併發執行,我們可以利用這一點來解決應用中對同一表查詢和插入的鎖爭用問題。 (3)MyISAM預設的鎖排程機制是寫優先,這並不一定適合所有應用,使用者可以通過設定LOW_PRIORITY_UPDATES引數,或在INSERT、UPDATE、DELETE語句中指定LOW_PRIORITY選項來調節讀寫鎖的爭用。 (4)由於表鎖的鎖定粒度大,讀寫之間又是序列的,因此,如果更新操作較多,MyISAM表可能會出現嚴重的鎖等待,可以考慮採用InnoDB表來減少鎖衝突。 對於InnoDB表,本章主要討論了以下幾項內容。 l InnoDB的行鎖是基於鎖引實現的,如果不通過索引訪問資料,InnoDB會使用表鎖。 l 介紹了InnoDB間隙鎖(Next-key)機制,以及InnoDB使用間隙鎖的原因。 l 在不同的隔離級別下,InnoDB的鎖機制和一致性讀策略不同。 l MySQL的恢復和複製對InnoDB鎖機制和一致性讀策略也有較大影響。 l 鎖衝突甚至死鎖很難完全避免。 在瞭解InnoDB鎖特性後,使用者可以通過設計和SQL調整等措施減少鎖衝突和死鎖,包括: l 儘量使用較低的隔離級別; l 精心設計索引,並儘量使用索引訪問資料,使加鎖更精確,從而減少鎖衝突的機會; l 選擇合理的事務大小,小事務發生鎖衝突的機率也更小; l 給記錄集顯示加鎖時,最好一次性請求足夠級別的鎖。比如要修改資料的話,最好直接申請排他鎖,而不是先申請共享鎖,修改時再請求排他鎖,這樣容易產生死鎖; l 不同的程式訪問一組表時,應儘量約定以相同的順序訪問各表,對一個表而言,儘可能以固定的順序存取表中的行。這樣可以大大減少死鎖的機會; l 儘量用相等條件訪問資料,這樣可以避免間隙鎖對併發插入的影響; l 不要申請超過實際需要的鎖級別;除非必須,查詢時不要顯示加鎖; l 對於一些特定的事務,可以使用表鎖來提高處理速度或減少死鎖的可能。
轉載:https://blog.csdn.net/xifeijian/article/details/20313977