MySQL用B+樹(而不是B樹)做索引的原因
眾所周知,MySQL的索引使用了B+樹的資料結構。那麼為什麼不用B樹呢?
先看一下B樹和B+樹的區別。
B樹
維基百科對B樹的定義為“在電腦科學中,B樹(B-tree)是一種樹狀資料結構,它能夠儲存資料、對其進行排序並允許以O(log n)的時間複雜度執行進行查詢、順序讀取、插入和刪除的資料結構。B樹,概括來說是一個節點可以擁有多於2個子節點的二叉查詢樹。與自平衡二叉查詢樹不同,B-樹為系統最優化大塊資料的讀和寫操作。B-tree演算法減少定位記錄時所經歷的中間過程,從而加快存取速度。普遍運用在資料庫和檔案系統。”
B 樹可以看作是對2-3查詢樹的一種擴充套件,即他允許每個節點有M-1個子節點。
定義
- 根節點至少有兩個子節點
- 每個節點有M-1個key,並且以升序排列
- 位於M-1和M key的子節點的值位於M-1 和M key對應的Value之間
- 其它節點至少有M/2個子節點
下圖是一個M=4 階的B樹:
可以看到B樹是2-3樹的一種擴充套件,他允許一個節點有多於2個的元素。
B樹的插入及平衡化操作和2-3樹很相似,這裡就不介紹了。
B+樹
B+樹是對B樹的一種變形樹,它與B樹的差異在於:
- 有k個子結點的結點必然有k個關鍵碼。
- 非葉結點僅具有索引作用,跟記錄有關的資訊均存放在葉結點中。
- 樹的所有葉結點構成一個有序連結串列,可以按照關鍵碼排序的次序遍歷全部記錄。
如下圖是一個B+樹:
B+樹和B樹的區別
B+樹的非葉子結點只包含導航資訊,不包含實際的值,所有的葉子結點和相連的節點使用連結串列相連,便於區間查詢和遍歷。
B+ 樹的優點在於:
- IO次數更少:由於B+樹在內部節點上不包含資料資訊,因此在記憶體頁中能夠存放更多的key。 資料存放的更加緊密,具有更好的空間區域性性。因此訪問葉子節點上關聯的資料也具有更好的快取命中率。
- 遍歷更加方便:B+樹的葉子結點都是相鏈的,因此對整棵樹的遍歷只需要一次線性遍歷葉子結點即可。而且由於資料順序排列並且相連,所以便於區間查詢和搜尋。而B樹則需要進行每一層的遞迴遍歷。相鄰的元素可能在記憶體中不相鄰,所以快取命中性沒有B+樹好。
但是B樹也有優點,其優點在於,由於B樹的每一個節點都包含key和value,因此經常訪問的元素可能離根節點更近,因此訪問也更迅速。
為什麼MySQL選擇B+樹做索引
-
B+樹的磁碟讀寫代價更低:B+樹的內部節點並沒有指向關鍵字具體資訊的指標,因此其內部節點相對B樹更小,如果把所有同一內部節點的關鍵字存放在同一盤塊中,那麼盤塊所能容納的關鍵字數量也越多,一次性讀入記憶體的需要查詢的關鍵字也就越多,相對IO讀寫次數就降低了。
-
B+樹的查詢效率更加穩定:由於非終結點並不是最終指向檔案內容的結點,而只是葉子結點中關鍵字的索引。所以任何關鍵字的查詢必須走一條從根結點到葉子結點的路。所有關鍵字查詢的路徑長度相同,導致每一個數據的查詢效率相當。
-
B+樹更便於遍歷:由於B+樹的資料都儲存在葉子結點中,分支結點均為索引,方便掃庫,只需要掃一遍葉子結點即可,但是B樹因為其分支結點同樣儲存著資料,我們要找到具體的資料,需要進行一次中序遍歷按序來掃,所以B+樹更加適合在區間查詢的情況,所以通常B+樹用於資料庫索引。
-
B+樹更適合基於範圍的查詢:B樹在提高了IO效能的同時並沒有解決元素遍歷的我效率低下的問題,正是為了解決這個問題,B+樹應用而生。B+樹只需要去遍歷葉子節點就可以實現整棵樹的遍歷。而且在資料庫中基於範圍的查詢是非常頻繁的,而B樹不支援這樣的操作或者說效率太低。