keras CNN卷積核可視化,熱度圖教程
阿新 • • 發佈:2020-06-23
卷積核可視化
import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.models import load_model # 將浮點影象轉換成有效影象 def deprocess_image(x): # 對張量進行規範化 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 x += 0.5 x = np.clip(x,1) # 轉化到RGB陣列 x *= 255 x = np.clip(x,255).astype('uint8') return x # 視覺化濾波器 def kernelvisual(model,layer_target=1,num_iterate=100): # 影象尺寸和通道 img_height,img_width,num_channels = K.int_shape(model.input)[1:4] num_out = K.int_shape(model.layers[layer_target].output)[-1] plt.suptitle('[%s] convnet filters visualizing' % model.layers[layer_target].name) print('第%d層有%d個通道' % (layer_target,num_out)) for i_kernal in range(num_out): input_img = model.input # 構建一個損耗函式,使所考慮的層的第n個濾波器的啟用最大化,-1層softmax層 if layer_target == -1: loss = K.mean(model.output[:,i_kernal]) else: loss = K.mean(model.layers[layer_target].output[:,:,i_kernal]) # m*28*28*128 # 計算影象對損失函式的梯度 grads = K.gradients(loss,input_img)[0] # 效用函式通過其L2範數標準化張量 grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5) # 此函式返回給定輸入影象的損耗和梯度 iterate = K.function([input_img],[loss,grads]) # 從帶有一些隨機噪聲的灰色影象開始 np.random.seed(0) # 隨機影象 # input_img_data = np.random.randint(0,255,(1,img_height,num_channels)) # 隨機 # input_img_data = np.zeros((1,num_channels)) # 零值 input_img_data = np.random.random((1,num_channels)) * 20 + 128. # 隨機灰度 input_img_data = np.array(input_img_data,dtype=float) failed = False # 執行梯度上升 print('####################################',i_kernal + 1) loss_value_pre = 0 # 執行梯度上升num_iterate步 for i in range(num_iterate): loss_value,grads_value = iterate([input_img_data]) if i % int(num_iterate/5) == 0: print('Iteration %d/%d,loss: %f' % (i,num_iterate,loss_value)) print('Mean grad: %f' % np.mean(grads_value)) if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()): failed = True print('Failed') break if loss_value_pre != 0 and loss_value_pre > loss_value: break if loss_value_pre == 0: loss_value_pre = loss_value # if loss_value > 0.99: # break input_img_data += grads_value * 1 # e-3 img_re = deprocess_image(input_img_data[0]) if num_channels == 1: img_re = np.reshape(img_re,(img_height,img_width)) else: img_re = np.reshape(img_re,num_channels)) plt.subplot(np.ceil(np.sqrt(num_out)),np.ceil(np.sqrt(num_out)),i_kernal + 1) plt.imshow(img_re) #,cmap='gray' plt.axis('off') plt.show()
執行
model = load_model('train3.h5') kernelvisual(model,-1) # 對最終輸出視覺化 kernelvisual(model,6) # 對第二個卷積層視覺化
熱度圖
import cv2 import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.preprocessing import image def heatmap(model,data_img,layer_idx,img_show=None,pred_idx=None): # 影象處理 if data_img.shape.__len__() != 4: # 由於用作輸入的img需要預處理,用作顯示的img需要原圖,因此分開兩個輸入 if img_show is None: img_show = data_img # 縮放 input_shape = K.int_shape(model.input)[1:3] # (28,28) data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape)) # 新增一個維度->(1,224,3) data_img = np.expand_dims(data_img,axis=0) if pred_idx is None: # 預測 preds = model.predict(data_img) # 獲取最高預測項的index pred_idx = np.argmax(preds[0]) # 目標輸出估值 target_output = model.output[:,pred_idx] # 目標層的輸出代表各通道關注的位置 last_conv_layer_output = model.layers[layer_idx].output # 求最終輸出對目標層輸出的導數(優化目標層輸出),代表目標層輸出對結果的影響 grads = K.gradients(target_output,last_conv_layer_output)[0] # 將每個通道的導數取平均,值越高代表該通道影響越大 pooled_grads = K.mean(grads,axis=(0,1,2)) iterate = K.function([model.input],[pooled_grads,last_conv_layer_output[0]]) pooled_grads_value,conv_layer_output_value = iterate([data_img]) # 將各通道關注的位置和各通道的影響乘起來 for i in range(conv_layer_output_value.shape[-1]): conv_layer_output_value[:,i] *= pooled_grads_value[i] # 對各通道取平均得圖片位置對結果的影響 heatmap = np.mean(conv_layer_output_value,axis=-1) # 規範化 heatmap = np.maximum(heatmap,0) heatmap /= np.max(heatmap) # plt.matshow(heatmap) # plt.show() # 疊加圖片 # 縮放成同等大小 heatmap = cv2.resize(heatmap,(img_show.shape[1],img_show.shape[0])) heatmap = np.uint8(255 * heatmap) # 將熱圖應用於原始影象.由於opencv熱度圖為BGR,需要轉RGB superimposed_img = img_show + cv2.applyColorMap(heatmap,cv2.COLORMAP_JET)[:,::-1] * 0.4 # 擷取轉uint8 superimposed_img = np.minimum(superimposed_img,255).astype('uint8') return superimposed_img,heatmap # 顯示圖片 # plt.imshow(superimposed_img) # plt.show() # 儲存為檔案 # superimposed_img = img + cv2.applyColorMap(heatmap,cv2.COLORMAP_JET) * 0.4 # cv2.imwrite('ele.png',superimposed_img) # 生成所有卷積層的熱度圖 def heatmaps(model,img_show=None): if img_show is None: img_show = np.array(data_img) # Resize input_shape = K.int_shape(model.input)[1:3] # (28,28,1) data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape)) # 新增一個維度->(1,3) data_img = np.expand_dims(data_img,axis=0) # 預測 preds = model.predict(data_img) # 獲取最高預測項的index pred_idx = np.argmax(preds[0]) print("預測為:%d(%f)" % (pred_idx,preds[0][pred_idx])) indexs = [] for i in range(model.layers.__len__()): if 'conv' in model.layers[i].name: indexs.append(i) print('模型共有%d個卷積層' % indexs.__len__()) plt.suptitle('heatmaps for each conv') for i in range(indexs.__len__()): ret = heatmap(model,indexs[i],img_show=img_show,pred_idx=pred_idx) plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)),np.ceil(np.sqrt(indexs.__len__()*2)),i*2 + 1)\ .set_title(model.layers[indexs[i]].name) plt.imshow(ret[0]) plt.axis('off') plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)),i*2 + 2)\ .set_title(model.layers[indexs[i]].name) plt.imshow(ret[1]) plt.axis('off') plt.show()
執行
from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input model = VGG16(weights='imagenet') data_img = image.img_to_array(image.load_img('elephant.png')) # VGG16預處理:RGB轉BGR,並對每一個顏色通道去均值中心化 data_img = preprocess_input(data_img) img_show = image.img_to_array(image.load_img('elephant.png')) heatmaps(model,img_show)
elephant.png
結語
踩坑踩得我腳疼
以上這篇keras CNN卷積核可視化,熱度圖教程就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。