DZY Loves Math IV(杜教篩)
技術標籤:# 杜教篩,min_25篩杜教篩數學
文章目錄
title
solution
這道題是多麼的妙啊,完全不是我能推出來的式子呢!
觀察資料範圍,有點奇怪欸,在暗示我??
考慮暴力列舉
n
n
n
S
(
n
,
m
)
=
∑
i
=
1
m
φ
(
n
×
i
)
S(n,m)=\sum_{i=1}^mφ(n\times i)
S(n,m)=i=1∑mφ(n×i)
神奇的操作來了,將
n
n
n質因數分解,並把不同的質因數分別拿出一個
n
=
∏
p
i
e
i
n=\prod p_i^{e_i}
q
=
∏
p
i
q=\prod p_i
q=∏pi
p
=
∏
p
i
e
i
−
1
p=\prod p_i^{e_i-1}
p=∏piei−1
則有
p
×
q
=
n
p\times q=n
p×q=n
- 若 i % j = 0 i\% j=0 i%j=0,則 φ ( i j ) = φ ( i ) × j φ(ij)=φ(i)\times j φ(ij)=φ(i)×j
- 若 ( i , j ) = 1 (i,j)=1 (i,j)=1,則 φ ( i j ) = φ ( i ) × φ ( j ) φ(ij)=φ(i)\times φ(j)
φ(ij)=φ(i)×φ(j)
S
(
n
,
m
)
=
∑
i
=
1
m
φ
(
n
×
i
)
S(n,m)=\sum_{i=1}^mφ(n\times i)
S(n,m)=i=1∑mφ(n×i)
=
p
⋅
∑
i
=
1
m
φ
(
q
×
i
)
=p\ ·\sum_{i=1}^mφ(q\times i)
=p⋅i=1∑mφ(q×i)
=
p
⋅
∑
i
=
1
m
φ
(
q
g
c
d
(
q
,
i
)
×
i
×
g
c
d
(
q
,
i
)
)
=p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)}\times i\times gcd(q,i))
φ
φ
φ用杜教篩,應該是老熟人了
S
(
n
,
m
)
S(n,m)
S(n,m)記憶化一下,應該就沒了
code
#include <cstdio>
#include <vector>
#include <map>
using namespace std;
#define mod 1000000007
#define int long long
#define maxn 200000
map < int, int > mp, s[maxn];
int cnt;
int minp[maxn + 5]; //minp[i]:i的最大質因子
int prime[maxn], phi[maxn + 5]; //phi[i]:1~i的phi的字首和
bool vis[maxn + 5];
void init() {
phi[1] = 1;
for( int i = 2;i <= maxn;i ++ ) {
if( ! vis[i] ) prime[++ cnt] = i, minp[i] = i, phi[i] = i - 1;
for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {
vis[i * prime[j]] = 1, minp[i * prime[j]] = prime[j];
if( i % prime[j] == 0 ) {
phi[i * prime[j]] = phi[i] * prime[j] % mod;//與式子推導的第二步為什麼p能直接從φ裡面拿出來呼應
break;
}
else
phi[i * prime[j]] = phi[i] * ( prime[j] - 1 ) % mod;
}
}
for( int i = 1;i <= maxn;i ++ ) phi[i] = ( phi[i] + phi[i - 1] ) % mod;
}
int Phi( int n ) {
if( n <= maxn ) return phi[n];
if( mp[n] ) return mp[n];
int ans = n * ( n + 1 ) / 2 % mod;
for( int i = 2, r;i <= n;i = r + 1 ) {
r = n / ( n / i );
ans = ( ans - ( r - i + 1 ) * Phi( n / i ) % mod + mod ) % mod;
}
return mp[n] = ans;
}
int solve( int n, int m ) {
if( ! m ) return 0;
if( s[n][m] ) return s[n][m];
if( n == 1 ) return s[n][m] = Phi( m );
if( m == 1 ) return s[n][m] = ( Phi( n ) - Phi( n - 1 ) + mod ) % mod;
vector < int > g;
int p = 1, q = 1, N = n, x;
while( N > 1 ) {
x = minp[N], q *= x, N /= x, g.push_back( x );
while( N % x == 0 ) N /= x, p *= x;
}
int len = g.size(), ans = 0;
for( int i = 0;i < ( 1 << len );i ++ ) { //列舉q的所有質因子(狀壓)
int d = 1;
for( int j = 0;j < len;j ++ )
if( i & ( 1 << j ) ) d = d * g[j]; //二進位制位為1則有該質因子
ans = ( ans + ( Phi( q / d ) - Phi( q / d - 1 ) + mod ) % mod * solve( d, m / d ) % mod ) % mod;
}
return s[n][m] = ans * p % mod;
}
signed main() {
int n, m;
scanf( "%lld %lld", &n, &m );
init();
int ans = 0;
for( int i = 1;i <= n;i ++ )
ans = ( ans + solve( i, m ) ) % mod;
printf( "%lld\n", ans );
return 0;
}