1. 程式人生 > 其它 >PyTorch:VGG16網路模型

PyTorch:VGG16網路模型

技術標籤:PyTorchPyTorchPythonVGG16

深度學習界的小學生一枚
從頭開始,先了解一下VGG16,哈哈哈

VGG16的結構圖隨便百度一下就好
這裡主要記錄一下程式碼流程

import torch.nn as nn
from torchsummary import summary
import torch


class VGG16(nn.Module):
    def __init__(self):
        super(VGG16, self).__init__()
        self.maxpool1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.maxpool2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.maxpool3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.maxpool4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.maxpool5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.dense = nn.Sequential(
            nn.Linear(512 * 5 * 5, 4096),
            nn.ReLU(),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Linear(4096, 1000)
        )

    def forward(self, x):
        pool1 = self.maxpool1(x)
        pool2 = self.maxpool2(pool1)
        pool3 = self.maxpool3(pool2)
        pool4 = self.maxpool4(pool3)
        pool5 = self.maxpool5(pool4)

        flat = pool5.view(pool5.size(0), -1)
        class_ = self.dense(flat)
        return class_


if __name__ == "__main__":
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    vgg_model = VGG16().to(device)

    #給模型一個輸入,檢視輸出size
    x = torch.rand(size=(8, 3, 160, 160))
    vgg_model(x)
    print(vgg_model(x).size())

    summary(vgg_model, (3, 160, 160))  # 列印網路結構

輸出

D:\Anaconda3\envs\pytorch\python.exe E:/LearningCode/Torch/Torch-Learning/vgg16-learning-01.py
torch.Size([8, 1000])
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 160, 160]           1,792
              ReLU-2         [-1, 64, 160, 160]               0
            Conv2d-3         [-1, 64, 160, 160]          36,928
              ReLU-4         [-1, 64, 160, 160]               0
         MaxPool2d-5           [-1, 64, 80, 80]               0
            Conv2d-6          [-1, 128, 80, 80]          73,856
              ReLU-7          [-1, 128, 80, 80]               0
            Conv2d-8          [-1, 128, 80, 80]         147,584
              ReLU-9          [-1, 128, 80, 80]               0
        MaxPool2d-10          [-1, 128, 40, 40]               0
           Conv2d-11          [-1, 256, 40, 40]         295,168
             ReLU-12          [-1, 256, 40, 40]               0
           Conv2d-13          [-1, 256, 40, 40]         590,080
             ReLU-14          [-1, 256, 40, 40]               0
           Conv2d-15          [-1, 256, 40, 40]         590,080
             ReLU-16          [-1, 256, 40, 40]               0
        MaxPool2d-17          [-1, 256, 20, 20]               0
           Conv2d-18          [-1, 512, 20, 20]       1,180,160
             ReLU-19          [-1, 512, 20, 20]               0
           Conv2d-20          [-1, 512, 20, 20]       2,359,808
             ReLU-21          [-1, 512, 20, 20]               0
           Conv2d-22          [-1, 512, 20, 20]       2,359,808
             ReLU-23          [-1, 512, 20, 20]               0
        MaxPool2d-24          [-1, 512, 10, 10]               0
           Conv2d-25          [-1, 512, 10, 10]       2,359,808
             ReLU-26          [-1, 512, 10, 10]               0
           Conv2d-27          [-1, 512, 10, 10]       2,359,808
             ReLU-28          [-1, 512, 10, 10]               0
           Conv2d-29          [-1, 512, 10, 10]       2,359,808
             ReLU-30          [-1, 512, 10, 10]               0
        MaxPool2d-31            [-1, 512, 5, 5]               0
           Linear-32                 [-1, 4096]      52,432,896
             ReLU-33                 [-1, 4096]               0
           Linear-34                 [-1, 4096]      16,781,312
             ReLU-35                 [-1, 4096]               0
           Linear-36                 [-1, 1000]       4,097,000
================================================================
Total params: 88,025,896
Trainable params: 88,025,896
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.29
Forward/backward pass size (MB): 111.56
Params size (MB): 335.79
Estimated Total Size (MB): 447.64
----------------------------------------------------------------

Process finished with exit code 0