Java開發工具-scala處理json格式利器-json4s詳解
1.為什麼是json4s
從json4s的官方描述
At this moment there are at least 6 json libraries for scala,not counting the java json libraries. All these libraries have a very similar AST. This project aims to provide a single AST to be used by other scala json libraries.
At this moment the approach taken to working with the AST has been taken from lift-json and the native package is in fact lift-json but outside of the lift project.
在scala庫中,至少有6個jso程式設計客棧n庫,並且不包括 java的json庫,這些庫都有著類似的抽象語法樹AST,json4s的目的就是為了使用簡單的一種語法支援這些json庫,因此說json4s可以說是一種json的規範處理,配合scala開發過程中極其簡介的語法特性,可以輕鬆地實現比如json合併,json的diff操作,可以方gAlvxC便地處理jsonArray的字串,所以如果使用scala,那麼json4s一定不能錯過,在實際場景下使用json處理資料很常見,比如spark開發中處理原始json資料等等,開始上手可能看起來比較複雜,但是用起來你會很爽。
2.json4s的資料結構
json4s包括10個型別和一個type型別的物件,分別如下
case object JNothing extends JValue // 'zero' for JValue case object JNull extends JValue case class JString(s: String) extends JValue case class JDouble(num: Double) extends JValue case class JDecimal(num: BigDecimal) extends JValue case class JInt(num: BigInt) extends JValue case class JLong(num: Long) extends JValue case class JBool(value: Boolean) extends JValue case class JObject(obj: List[JField]) extends JValue case class JArray(arr: List[JValue]) extends JValue type JField = (String,JValue)
可以看到,他們都繼承自JValue,JValue是json4s裡面類似於java的object地位,而JField是用來一次性匹配json的key,value對而準備的。
3.json4s的實踐
下面來看,我們如何來使用json4s
<dependency> <groupId>org.json4s</groupId> <artifactId>json4s-native_2.11</artifactId> <version>3.7.0-M6</version> </dependency>
看下面的程式碼即可,註釋寫的比較清晰,一般來說json的使用無外乎是字串到物件或者物件到字串,而字串到物件可以用case class 也可以用原始的比如上面提到的類
package com.hoult.scala.json4s import org.json4s._ import 程式設計客棧org.json4s.JsonDSL._ import org.json4s.native.JsonMethods._ object Demo1 { def main(args: Array[String]): Unit = { //parse方法表示從字串到json-object val person = parse( """ |{"name":"Toy","price":35.35} |""".stripMargin,useBigDecimalForDouble = true) // 1.模式匹配提取, \表示提取 val JString(name) = (person \ "name") println(name) // 2.extract[String]取值 // implicit val formats = org.json4s.Formats implicit val formats = DefaultFormats val name2 程式設計客棧= (person \ "name").extract[String] val name3 = (person \ "name").extractOpt[String] val name4 = (person \ "name").extractOrElse("") // 3.多層巢狀取值 val parseJson: JValue = parse( """ |{"name":{"tome":"new"},useBigDecimalForDouble = true) //3.1 逐層訪問 val value = (parseJson \ "name程式設計客棧" \ "tome").extract[String] //3.2 迴圈訪問 val value2 = (parseJson \\ "tome") println(value2) //4.巢狀json串解析 val json = parse( """ { "name": "joe","children": [ { "name": "Mary","age": 20 },{ "name": "Mazy","age": 10 } ] } """) // println(json \ "children") //模式匹配 for (JArray(child) <- json) println(child) //提取object 下 某欄位的值 val ages = for { JObject(child) <- json JField("age",JInt(age)) <- child } yield age println(ages) // 巢狀取陣列中某個欄位值,並新增過濾 val nameAges = for { JObject(child) <- json JField("name",JString(name)) <- child JField("age",JInt(age)) <- child if age > 10 } yield (name,age) println(nameAges) // 5.json和物件的轉換,[就是json陣列] case class ClassA(a: Int,b: Int) val json2: String = """[{"a":1,"b":2},{"a":1,"b":2}]""" val bb: List[ClassA] = parse(json2).extract[List[ClassA]] println(bb) // 6.json轉物件,[json 非json陣列,但是每個級別要明確] case class ClassC(a: Int,b: Int) case class ClassB(c: List[ClassC]) val json3: String = """{"c":[{"a":1,"b":2}]}""" val cc: ClassB = parse(json3).extract[ClassB] println(cc) // 7.使用org.json4s產生json字串 // import org.json4s.JsonDSL._ val json1 = List(1,2,3) val jsonMap = ("name" -> "joe") val jsonUnion = ("name" -> "joe") ~ ("age" -> 10) val jsonOpt = ("name" -> "joe") ~ ("age" -> Some(1)) val jsonOpt2 = ("name" -> "joe") ~ ("age" -> (None: Option[Int])) case class Winner(id: Long,numbers: List[Int]) case class Lotto(id: Long,winningNumbers: List[Int],winners: List[Winner],drawDate: Option[java.util.Date]) val winners = List(Winner(10,List(1,5)),Winner(11,0))) val lotto = Lotto(11,5),winners,None) val jsonCase = ("lotto" -> ("lotto-id" -> lotto.id) ~ ("winning-numbers" -> lotto.winningNumbers) ~ ("draw-date" -> lotto.drawDate.map(_.toString)) ~ ("winners" -> lotto.winners.map { w => (("winner-id" -> w.id) ~ ("numbers" -> w.numbers))})) println(compact(render(json1))) println(compact(render(jsonMap))) println(compact(render(jsonUnion))) println(compact(render(jsonOpt))) println(compact(render(jsonOpt2))) println(compact(render(jsonCase))) // 8.json格式化 println(pretty(render(jsonCase))) // 9.合併字串 val lotto1 = parse("""{ "lotto":{ "lotto-id": 1,"winning-numbers":[7,8,9],"winners":[{ "winner-id": 1,"numbers":[7,9] }] } }""") val lotto2 = parse("""{ "lotto":{ "winners":[{ "winner-id": 2,"numbers":[1,23,5] }] } }""") val mergedLotto = lotto1 merge lotto2 // println(pretty(render(mergedLotto))) // 10.字串尋找差異 val Diff(changed,added,deleted) = mergedLotto diff lotto1 println(changed) println(added) println(deleted) val json10 = parse( """ """) println("********8") println(json10) for (JObject(j) <- json10) println(j) println("********11") // 11.遍歷json,使用for // key1 values key1_vk1:v1 .... val str = "{\"tag_name\":\"t_transaction_again_day\",\"tag_distribute_json\":\"{\\\"1\\\":\\\"0.0011231395\\\",\\\"0\\\":\\\"0.9988768605\\\"}\"}" val valueJson = parse(str) \ "tag_distribute_json" println(valueJson) for { JString(obj) <- valueJson JObject(dlist) <- parse(obj) (key,JString(value))<- dlist } { println(key + "::" + value) // val kvList = for (JObject(key,value) <- parse(obj)) yield (key,value) // println("obj : " + kvList.mkString(",")) } } }
4.注意
4.1 compact 和 render的使用
常用寫法compact(render(json))
,用來把一個json物件轉成字串,並壓縮顯示,當然也可以用prety(render(json))
4.2 序列化時候需要一個隱式物件
例如下面的
implicit val formats = Serialization.formats(NoTypeHints)
參考
https://json4s.org/
https://github.com/json4s/json4s/tree/v.3.2.0_scala2.10
https://www.cnblogs.com/yyy-blog/p/11819302.html
https://www.shuzhiduo.com/A/Vx5MBVOYdN/
https://segmentfault.com/a/1190000007302496
https://www.coder.work/article/6786418
https://www.wolai.com/sTVar6XXjpuM9ANFn2sx9n
https://www.wolai.com/sTVar6XXjpuM9ANFn2sx9n
到此這篇關於開發工具-scala處理json格式利器-json4s的文章就介紹到這了,更多相關scala處理json格式利器-json4s內容請搜尋我們以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援我們!