【575】連續卷積層
阿新 • • 發佈:2021-06-18
對於連續的卷積層,filter 的維度是跟輸入影象的維度一致
model = Sequential([ Conv2D(8, 3, input_shape=(28, 28, 1), use_bias=False), Conv2D(16, 3, use_bias=False) ]) model.summary()
輸出
Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_3 (Conv2D) (None, 26, 26, 8) 72 _________________________________________________________________ conv2d_4 (Conv2D) (None, 24, 24, 16) 1152 ================================================================= Total params: 1,224 Trainable params: 1,224 Non-trainable params: 0 _________________________________________________________________
其中:
-
第一層的filter為 3x3x1x8=72(原始資料是 28x28x1,得到資料 26x26x8)
-
第二層的filter為 3x3x8x16=1152(上一個資料是 26x26x8,得到資料 24x24x16)