1. 程式人生 > 其它 >FATFS(筆記1)-SD卡建立FATFS檔案系統,輸出檔案列表

FATFS(筆記1)-SD卡建立FATFS檔案系統,輸出檔案列表

樸素貝葉斯分類

實驗三 樸素貝葉斯演算法

這個作業屬於哪個課程[AHPU-機器學習](https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085
這個作業要求在哪裡 實驗三 樸素貝葉斯演算法
這個作業的目標 理解樸素貝葉斯演算法,能實現樸素貝葉斯演算法
學號 3170701219
目錄
  • 一、實驗目的
  • 二、實驗內容
  • 三、實驗報告要求
  • 四、實驗過程及核心程式碼註釋
  • 五、實驗結果
  • 六、實驗小結

一、實驗目的

1.理解樸素貝葉斯演算法原理,掌握樸素貝葉斯演算法框架;
2.掌握常見的高斯模型,多項式模型和伯努利模型;
3.能根據不同的資料型別,選擇不同的概率模型實現樸素貝葉斯演算法;
4.針對特定應用場景及資料,能應用樸素貝葉斯解決實際問題。

二、實驗內容

1.實現高斯樸素貝葉斯演算法。
2.熟悉sklearn庫中的樸素貝葉斯演算法;
3.針對iris資料集,應用sklearn的樸素貝葉斯演算法進行類別預測。
4.針對iris資料集,利用自編樸素貝葉斯演算法進行類別預測。

三、實驗報告要求

1.對照實驗內容,撰寫實驗過程、演算法及測試結果;
2.程式碼規範化:命名規則、註釋;
3.分析核心演算法的複雜度;
4.查閱文獻,討論各種樸素貝葉斯演算法的應用場景;
5.討論樸素貝葉斯演算法的優缺點。

四、實驗過程及核心程式碼註釋

1.核心程式碼註釋
GaussianNB 高斯樸素貝葉斯
特徵的可能性被假設為高斯概率密度函式: 數學期望(mean):μ,方差:

class NaiveBayes:
    def __init__(self):
        self.model = None
    # 數學期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))
    # 標準差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
    # 概率密度函式
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
    # 處理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries
    # 分類別求出數學期望和標準差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'
    # 計算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities
    # 類別
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))

2.伯努利模型和多項式模型

from sklearn.naive_bayes import BernoulliNB, MultinomialNB 
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4, 3.2, 1.3, 0.2]))
model.score(X_test, y_test)
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

clf.predict([[4.4, 3.2, 1.3, 0.2]])

五、實驗結果