Typescript一些常用的泛型工具
一、相關資訊
實驗班級 | 機器學習 |
---|---|
實驗名稱 | 樸素貝葉斯演算法及應用 |
學號 | 3180701333 |
二、實驗資訊
【實驗目的】
1.理解決策樹演算法原理,掌握決策樹演算法框架;
2.理解決策樹學習演算法的特徵選擇、樹的生成和樹的剪枝;
3.能根據不同的資料型別,選擇不同的決策樹演算法;
4.針對特定應用場景及資料,能應用決策樹演算法解決實際問題。
【實驗內容】
1.設計演算法實現熵、經驗條件熵、資訊增益等方法。
2.實現ID3演算法。
3.熟悉sklearn庫中的決策樹演算法;
4.針對iris資料集,應用sklearn的決策樹演算法進行類別預測。
5.針對iris資料集,利用自編決策樹演算法進行類別預測。
【實驗報告要求】
1.對照實驗內容,撰寫實驗過程、演算法及測試結果;
2.程式碼規範化:命名規則、註釋;
3.分析核心演算法的複雜度;
4.查閱文獻,討論ID3、5演算法的應用場景;
5.查詢文獻,分析決策樹剪枝策略。
三、實驗具體完成情況
(1)實驗主要程式碼及部分註釋:
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math from math import log import pprint
# 書上題目5.1 def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'],] labels = [u'年齡', u'有工作', u'有自己的房子', u'信貸情況', u'類別'] # 返回資料集和每個維度的名稱 return datasets, labels datasets, labels = create_data() train_data = pd.DataFrame(datasets, columns=labels) train_data
# 熵
def calc_ent(datasets):
data_length = len(datasets)
label_count = {}
for i in range(data_length):
label = datasets[i][-1]
if label not in label_count:
label_count[label] = 0
label_count[label] += 1
ent = -sum([(p / data_length) * log(p / data_length, 2)
for p in label_count.values()])
return ent
# def entropy(y):
# """
# Entropy of a label sequence
# """
# hist = np.bincount(y)
# ps = hist / np.sum(hist)
# return -np.sum([p * np.log2(p) for p in ps if p > 0])
# 經驗條件熵
def cond_ent(datasets, axis=0):
data_length = len(datasets)
feature_sets = {}
for i in range(data_length):
feature = datasets[i][axis]
if feature not in feature_sets:
feature_sets[feature] = []
feature_sets[feature].append(datasets[i])
cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
return cond_ent
# 資訊增益
def info_gain(ent, cond_ent):
return ent - cond_ent
def info_gain_train(datasets):
count = len(datasets[0]) - 1
ent = calc_ent(datasets)
# ent = entropy(datasets)
best_feature = []
for c in range(count):
c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
best_feature.append((c, c_info_gain))
print('特徵({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
# 比較大小
best_ = max(best_feature, key=lambda x: x[-1])
return '特徵({})的資訊增益最大,選擇為根節點特徵'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
# 定義節點類 二叉樹
class Node:
def __init__(self, root=True, label=None, feature_name=None, feature=None):
self.root = root
self.label = label
self.feature_name = feature_name
self.feature = feature
self.tree = {}
self.result = {
'label:': self.label,
'feature': self.feature,
'tree': self.tree}
def __repr__(self):
return '{}'.format(self.result)
def add_node(self, val, node):
self.tree[val] = node
def predict(self, features):
if self.root is True:
return self.label
return self.tree[features[self.feature]].predict(features)
class DTree:
def __init__(self, epsilon=0.1):
self.epsilon = epsilon
self._tree = {}
# 熵
@staticmethod
def calc_ent(datasets):
data_length = len(datasets)
label_count = {}
for i in range(data_length):
label = datasets[i][-1]
if label not in label_count:
label_count[label] = 0
label_count[label] += 1
ent = -sum([(p / data_length) * log(p / data_length, 2)
for p in label_count.values()])
return ent
# 經驗條件熵
def cond_ent(self, datasets, axis=0):
data_length = len(datasets)
feature_sets = {}
for i in range(data_length):
feature = datasets[i][axis]
if feature not in feature_sets:
feature_sets[feature] = []
feature_sets[feature].append(datasets[i])
cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
for p in feature_sets.values()])
return cond_ent
# 資訊增益
@staticmethod
def info_gain(ent, cond_ent):
return ent - cond_ent
def info_gain_train(self, datasets):
count = len(datasets[0]) - 1
ent = self.calc_ent(datasets)
best_feature = []
for c in range(count):
c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
best_feature.append((c, c_info_gain))
# 比較大小
best_ = max(best_feature, key=lambda x: x[-1])
return best_
def train(self, train_data):
"""
input:資料集D(DataFrame格式),特徵集A,閾值eta
output:決策樹T
"""
_, y_train, features = train_data.iloc[:, :
-1], train_data.iloc[:,-1], train_data.columns[:-1]
# 1,若D中例項屬於同一類Ck,則T為單節點樹,並將類Ck作為結點的類標記,返回T
if len(y_train.value_counts()) == 1:
return Node(root=True, label=y_train.iloc[0])
# 2, 若A為空,則T為單節點樹,將D中例項樹最大的類Ck作為該節點的類標記,返回T
if len(features) == 0:
return Node(
root=True,
label=y_train.value_counts().sort_values(
ascending=False).index[0])
# 3,計算最大資訊增益 同5.1,Ag為資訊增益最大的特徵
max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
max_feature_name = features[max_feature]
# 4,Ag的資訊增益小於閾值eta,則置T為單節點樹,並將D中是例項數最大的類Ck作為該節點的類標記,返
if max_info_gain < self.epsilon:
return Node(
root=True,
label=y_train.value_counts().sort_values(ascending=False).index[0])
# 5,構建Ag子集
node_tree = Node(
root=False, feature_name=max_feature_name, feature=max_feature)
feature_list = train_data[max_feature_name].value_counts().index
for f in feature_list:
sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)
# 6, 遞迴生成樹
sub_tree = self.train(sub_train_df)
node_tree.add_node(f, sub_tree)
# pprint.pprint(node_tree.tree)
return node_tree
def fit(self, train_data):
self._tree = self.train(train_data)
return self._tree
def predict(self, X_test):
return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree
dt.predict(['老年', '否', '否', '一般'])
# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
data = np.array(df.iloc[:100, [0, 1, -1]])
# print(data)
return data[:, :2], data[:, -1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)
clf.score(X_test, y_test)
tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
dot_graph = f.read()
graphviz.Source(dot_graph)
(2)實驗執行結果截圖:
三.實驗小結
通過本次實驗,我對課本有關樸素貝葉斯演算法的原理有了更近一步的掌握,對於樸素貝葉斯來說,它具有一個較強的假設即特徵條件獨立,這使得它條件概率的計算量大大減少。同時,我也學會了使用常見的高斯模型,多項式模型和伯努利模型去實現樸素貝葉斯演算法。雖然樸素貝葉斯使用了過於簡化的假設,這個分類器在許多實際情況中都執行良好,著名的是文件分類和垃圾郵件過濾。而且由於貝葉斯是從概率角度進行估計的,它所需要的樣本量比較少,極端情況下甚至我們可以使用較少的資料作為訓練集,依然可以得到很好的擬合效果。
樸素貝葉斯的主要優點在於:
1)樸素貝葉斯模型發源於古典數學理論,有穩定的分類效率。
2)對小規模的資料表現很好,能個處理多分類任務,適合增量式訓練,尤其是資料量超出記憶體時,我們可以一批批的去增量訓練。
3)對缺失資料不太敏感,演算法也比較簡單,常用於文字分類。
樸素貝葉斯的主要缺點在於:
1)理論上,樸素貝葉斯模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為樸素貝葉斯模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,在屬性個數比較多或者屬性之間相關性較大時,分類效果不好。而在屬性相關性較小時,樸素貝葉斯效能最為良好。對於這一點,有半樸素貝葉斯之類的演算法通過考慮部分關聯性適度改進。
2)需要知道先驗概率,且先驗概率很多時候取決於假設,假設的模型可以有很多種,因此在某些時候會由於假設的先驗模型的原因導致預測效果不佳。
3)由於我們是通過先驗和資料來決定後驗的概率從而決定分類,所以分類決策存在一定的錯誤率。
4)對輸入資料的表達形式很敏感。