1. 程式人生 > 其它 >【580】PyTorch 實現 CNN 例子

【580】PyTorch 實現 CNN 例子

參考:PyTorch 神經網路

參考:PyTorch 影象分類器

參考:深度學習框架Keras與Pytorch對比


  實現下面這個網路:

  • 第一層:卷積 5*5*6、ReLU、Max Pooling
  • 第二層:卷積 5*5*16、ReLU、Max Pooling
  • 第三層:Flatten、Linear NN
  • 第四層:Linear NN
  • 第五層:Linear NN  

  這是一個簡單的前饋神經網路,它接收輸入,讓輸入一個接著一個的通過一些層,最後給出輸出。

一個典型的神經網路訓練過程包括以下幾點:

  1. 定義一個包含可訓練引數的神經網路
  2. 迭代整個輸入
  3. 通過神經網路處理輸入
  4. 計算損失(loss)
  5. 反向傳播梯度到神經網路的引數
  6. 更新網路的引數,典型的用一個簡單的更新方法:weight=weight-learning_rate*gradient

定義神經網路:

import torch 
import torch.nn as nn 
import torch.nn.functional as F 

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution kernel
        # 第一層
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        # 第二層
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # an affine operation: y = Wx + b
        # 第三層
        self.fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
        # 第四層
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        # 第五層
        self.fc3 = nn.Linear(in_features=84, out_features=10)
        
    def forward(self, x):
        # 第一層 (conv1 -> relu -> max pooling)
        x = self.conv1(x)
        x = F.relu(x)
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(x, (2, 2))
        
        # 第二層 (conv2 -> relu -> max pooling)
        x = self.conv2(x)
        x = F.relu(x)
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(x, 2)
        
        # 第三層 (fc -> relu)
        x = x.view(-1, self.num_flat_features(x))
        x = self.fc1(x)
        x = F.relu(x) 
        
        # 第四層 (fc -> relu)
        x = self.fc2(x)
        x = F.relu(x)
        
        # 第五層 (fc -> relu)
        x = self.fc3(x)
        x = F.relu(x) 
        
        return x 
        
    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
    
net = Net()
print(net) 

  輸出:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

在Pytorch中訓練模型包括以下幾個步驟:

  1. 在每批訓練開始時初始化梯度
  2. 前向傳播
  3. 反向傳播
  4. 計算損失並更新權重
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

  通用

# 在資料集上迴圈多次
for epoch in range(2):  
    for i, data in enumerate(trainloader, 0):
        # 獲取輸入; data是列表[inputs, labels]
        inputs, labels = data 
        # (1) 初始化梯度
        optimizer.zero_grad() 

        # (2) 前向傳播
        outputs = net(inputs)
        loss = criterion(outputs, labels)

        # (3) 反向傳播
        loss.backward()
        # (4) 計算損失並更新權重
        optimizer.step()