1. 程式人生 > 其它 >ReentrantReadWriteLock實現原理

ReentrantReadWriteLock實現原理

重入鎖ReentrantLock是排它鎖,當一個執行緒獲得鎖時,其他執行緒均會處於阻塞狀態。
而對於網際網路產品來說,大多數情況是讀多寫少,不需要每次操作都阻塞,只需要保證在寫的場景下,其他讀鎖處於阻塞狀態,等寫執行緒釋放鎖後,讀請求才能執行;若沒有寫操作的情況下,讀請求不需要阻塞執行緒。為此,JDK1.5提供了ReentrantReadWriteLock類。

1.基本使用

public class ReentrantReadWriteLockDemo {
    static ReadWriteLock rwl = new ReentrantReadWriteLock();
    static Lock readLock = rwl.readLock();
    static Lock writeLock = rwl.writeLock();

    void read() {
        readLock.lock();
        String name = Thread.currentThread().getName();
        System.out.printf("執行緒%s獲得讀鎖\n", name);
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.printf("執行緒%s釋放讀鎖\n", name);
            readLock.unlock();
        }
    }

    void write() {
        writeLock.lock();
        String name = Thread.currentThread().getName();
        System.out.printf("執行緒%s獲得寫鎖\n", name);
        try {
            TimeUnit.SECONDS.sleep(3);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.printf("執行緒%s釋放寫鎖\n", name);
            writeLock.unlock();
        }
    }

    public static void main(String[] args) {
        ReentrantReadWriteLockDemo demo = new ReentrantReadWriteLockDemo();
        Thread[] threads = new Thread[20];
        for (int i = 0; i < threads.length; i++) {
            if (i % 2 == 0) {
                threads[i] = new Thread(demo::read);
            } else {
                threads[i] = new Thread(demo::write);
            }
        }

        for (int i = 0; i < threads.length; i++) {
            threads[i].start();
        }

    }
}

通過ReentrantReadWriteLock將讀鎖和寫鎖隔離開,當沒有寫操作時,讀鎖直接通過共享鎖的方式直接讀取,不會阻塞其他執行緒;只有在有寫入操作的情況下,讀操作才會進行阻塞,等寫操作釋放鎖之後,讀操作才能繼續執行。保證讀的操作不會出現髒讀的現象。

2.實現原理

首先,來看ReentrantReadWriteLock構造方法,

public ReentrantReadWriteLock() {
    this(false);
}

public ReentrantReadWriteLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
    readerLock = new ReadLock(this);
    writerLock = new WriteLock(this);
}

由上述原始碼得知:該類也是通過自定義佇列同步器實現的,有公平鎖和非公平鎖兩種實現方式;同時在構造器中初始化了ReadLockWriteLock兩個鎖物件,這兩個物件都是定義在ReentrantReadWriteLock類中的靜態內部類。
我們從WriteLock#lock()方法入手,詳細分析下其底層實現

public static class WriteLock implements Lock, java.io.Serializable {
	...
	public void lock() {
		sync.acquire(1);
	}
	...
}

這裡的acquire方法是定義在AQS中的獲取鎖的方法,由子類自定義具體獲取鎖的方式

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {
	...
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
}

tryAcquire方法具體由自定義同步器實現,本文主要分析預設的實現方式,由上述構造器方法可以得知,預設的同步器是非公平的方式,也就是由ReentrantReadWriteLock$NonfairSync進行實現,這裡的tryAcquire方法是定義在其父類Sync類中的:

abstract static class Sync extends AbstractQueuedSynchronizer {
	static final int SHARED_SHIFT   = 16;
	static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
	static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
	static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

	/** Returns the number of shared holds represented in count  */
	static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
	/** Returns the number of exclusive holds represented in count  */
	static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
	...
	protected final boolean tryAcquire(int acquires) {
		/*
		* Walkthrough:
		* 1. If read count nonzero or write count nonzero
		*    and owner is a different thread, fail.
		* 2. If count would saturate, fail. (This can only
		*    happen if count is already nonzero.)
		* 3. Otherwise, this thread is eligible for lock if
		*    it is either a reentrant acquire or
		*    queue policy allows it. If so, update state
		*    and set owner.
		*/
		Thread current = Thread.currentThread();
		int c = getState();
		int w = exclusiveCount(c);
		if (c != 0) {
			// (Note: if c != 0 and w == 0 then shared count != 0)
			if (w == 0 || current != getExclusiveOwnerThread())
				return false;
			if (w + exclusiveCount(acquires) > MAX_COUNT)
				throw new Error("Maximum lock count exceeded");
			// Reentrant acquire
			setState(c + acquires);
			return true;
		}
		if (writerShouldBlock() ||
		!compareAndSetState(c, c + acquires))
			return false;
		setExclusiveOwnerThread(current);
		return true;
	}
	...
}

當執行緒的狀態state沒有被修改,也就是其值為預設值0,writeShouldBlock定義在NonfairSync中,

static final class NonfairSync extends Sync {
	final boolean writerShouldBlock() {
		return false; // writers can always barge
	}
}

因此,若沒有執行緒獲取鎖,則會呼叫CAS方法修改state的值,然後將當前執行緒記錄到獨佔執行緒的標識中
獲取鎖的執行緒可以直接執行lockunlock之間的程式碼,若此時執行緒A獲取鎖,在還未釋放時,執行緒B再次呼叫lock方法,則會判斷寫鎖的執行緒數量,也就是exclusiveCount方法,會判斷出當前寫鎖的標識,因為當前是執行緒A擁有鎖,則該方法返回1,執行緒B執行tryAcquire最終會返回false。若還是執行緒A執行lock操作,則直接增加重入次數。

Sync類中,使用32位標識讀寫鎖的狀態,使用低16位標識寫鎖的狀態,使用高16位標識讀鎖的狀態。

而根據AQS中acquire()方法的定義,若獲取鎖失敗,則會將執行緒加入阻塞佇列中

public final void acquire(int arg) {
	if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
		selfInterrupt();
}

根據AQS的處理邏輯,獲取不到鎖的寫執行緒將會加入到一個雙向連結串列佇列中,如下:

只有當執行緒A釋放鎖之後,也就是呼叫unlock方法後,才會根據連結串列的順序依次喚醒阻塞佇列中的執行緒,這裡與ReentrantLock實現原理中的實現是一樣的,再次不具體贅述,unlock方法定義如下:

public static class WriteLock implements Lock, java.io.Serializable {
	public void unlock() {
		sync.release(1);
	}
}

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {
	...
	public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
	...
}

abstract static class Sync extends AbstractQueuedSynchronizer {
	protected final boolean tryRelease(int releases) {
		if (!isHeldExclusively())
			throw new IllegalMonitorStateException();
		int nextc = getState() - releases;
		boolean free = exclusiveCount(nextc) == 0;
		if (free)
			setExclusiveOwnerThread(null);
		setState(nextc);
		return free;
	}
}

從上得知,執行緒A釋放鎖後,會執行unparkSuccessor喚醒處於阻塞佇列中的第一個有效節點,這部分屬於AQS的實現範疇,不再贅述。

再來看看讀請求獲取鎖的情況

public static class ReadLock implements Lock, java.io.Serializable {
	...
	public void lock() {
		sync.acquireShared(1);
	}
	...
}

同樣,這裡是呼叫的AQS裡面的獲取共享鎖的方法,

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {
	...
	public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
	...
}

tryAcquireShared方法具體由自定義的同步器進行實現

abstract static class Sync extends AbstractQueuedSynchronizer {
	...
	protected final int tryAcquireShared(int unused) {
		/*
		* Walkthrough:
		* 1. If write lock held by another thread, fail.
		* 2. Otherwise, this thread is eligible for
		*    lock wrt state, so ask if it should block
		*    because of queue policy. If not, try
		*    to grant by CASing state and updating count.
		*    Note that step does not check for reentrant
		*    acquires, which is postponed to full version
		*    to avoid having to check hold count in
		*    the more typical non-reentrant case.
		* 3. If step 2 fails either because thread
		*    apparently not eligible or CAS fails or count
		*    saturated, chain to version with full retry loop.
		*/
		Thread current = Thread.currentThread();
		int c = getState();
		if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current)
			return -1;
		int r = sharedCount(c);
		if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) {
			if (r == 0) {
			firstReader = current;
			firstReaderHoldCount = 1;
		} else if (firstReader == current) {
			firstReaderHoldCount++;
		} else {
			HoldCounter rh = cachedHoldCounter;
			if (rh == null || rh.tid != getThreadId(current))
				cachedHoldCounter = rh = readHolds.get();
			else if (rh.count == 0)
				readHolds.set(rh);
			rh.count++;
		}
		return 1;
		}
		return fullTryAcquireShared(current);
	}
	...
}

假設還是由執行緒A持有鎖,讀操作執行lock方法時,都會返回-1,根據AQS中acquireShared方法的定義,當tryAcquireShared小於0時,就會加入阻塞佇列,佇列方式與寫執行緒類似,也是一個雙向連結串列的方式。
至此,也解釋了存在寫操作時,所有的讀操作被阻塞,直到寫操作釋放鎖後,讀操作才能繼續執行。
若當前沒有執行緒獲得鎖,也就是state狀態為0,會呼叫sharedCount方法,該方法在Sync中使用高16位標識。readerShouldBlock方法定義如下:

static final class NonfairSync extends Sync {
	...
	final boolean readerShouldBlock() {
	/* As a heuristic to avoid indefinite writer starvation,
	* block if the thread that momentarily appears to be head
	* of queue, if one exists, is a waiting writer.  This is
	* only a probabilistic effect since a new reader will not
	* block if there is a waiting writer behind other enabled
	* readers that have not yet drained from the queue.
	*/
	return apparentlyFirstQueuedIsExclusive();
	}
}

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {
	...
	final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return (h = head) != null &&
            (s = h.next)  != null &&
            !s.isShared()         &&
            s.thread != null;
    }
	...
}

當執行緒1執行讀鎖的lock方法,會執行CAS操作修改state的值,當執行緒2再次執行讀鎖的lock方法,則會將每一個讀執行緒的資訊儲存在ThreadLocalHoldCounter中,定義如下:

abstract static class Sync extends AbstractQueuedSynchronizer {
	...
	static final class HoldCounter {
		int count = 0;
		// Use id, not reference, to avoid garbage retention
		final long tid = getThreadId(Thread.currentThread());
	}

	/**
	* ThreadLocal subclass. Easiest to explicitly define for sake
	* of deserialization mechanics.
	*/
	static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> {
		public HoldCounter initialValue() {
			return new HoldCounter();
		}
	}

	/**
	* The number of reentrant read locks held by current thread.
	* Initialized only in constructor and readObject.
	* Removed whenever a thread's read hold count drops to 0.
	*/
	private transient ThreadLocalHoldCounter readHolds;
...
}

每個執行緒都會有一個ThreadLocal儲存的變數副本,在沒有寫操作時也不會對執行緒進行阻塞。而一旦有個寫操作,通過CAS修改了state狀態的值,後續讀操作都會加入到一個阻塞佇列中,直到寫操作釋放鎖後,阻塞佇列中的執行緒才能再次進行執行。
至此,ReentrantReadWriteLock的基本特性已分析完畢。