1. 程式人生 > 其它 >【BP預測】基於鯨魚演算法優化BP神經網路實現資料預測matlab原始碼

【BP預測】基於鯨魚演算法優化BP神經網路實現資料預測matlab原始碼

一、 BP神經網路預測演算法簡介

說明:1.1節主要是概括和幫助理解考慮影響因素的BP神經網路演算法原理,即常規的BP模型訓練原理講解(可根據自身掌握的知識是否跳過)。1.2節開始講基於歷史值影響的BP神經網路預測模型。

使用BP神經網路進行預測時,從考慮的輸入指標角度,主要有兩類模型:

1.1 受相關指標影響的BP神經網路演算法原理

如圖一所示,使用MATLAB的newff函式訓練BP時,可以看到大部分情況是三層的神經網路(即輸入層,隱含層,輸出層)。這裡幫助理解下神經網路原理:
1)輸入層:相當於人的五官,五官獲取外部資訊,對應神經網路模型input埠接收輸入資料的過程。
2)隱含層:對應人的大腦,大腦對五官傳遞來的資料進行分析和思考,神經網路的隱含層hidden Layer對輸入層傳來的資料x進行對映,簡單理解為一個公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做權重、閾值引數,F()為對映規則,也叫啟用函式,hiddenLayer_output是隱含層對於傳來的資料對映的輸出值。換句話說,隱含層對於輸入的影響因素資料x進行了對映,產生了對映值。
3)輸出層:可以對應為人的四肢,大腦對五官傳來的資訊經過思考(隱含層對映)之後,再控制四肢執行動作(向外部作出響應)。類似地,BP神經網路的輸出層對hiddenLayer_output再次進行對映,outputLayer_output=w *hiddenLayer_output+b。其中,w、b為權重、閾值引數,outputLayer_output是神經網路輸出層的輸出值(也叫模擬值、預測值)(理解為,人腦對外的執行動作,比如嬰兒拍打桌子)。
4)梯度下降演算法:通過計算outputLayer_output和神經網路模型傳入的y值之間的偏差,使用演算法來相應調整權重和閾值等引數。這個過程,可以理解為嬰兒拍打桌子,打偏了,根據偏離的距離遠近,來調整身體使得再次揮動的胳膊不斷靠近桌子,最終打中。

再舉個例子來加深理解:

圖一所示BP神經網路,具備輸入層、隱含層和輸出層。BP是如何通過這三層結構來實現輸出層的輸出值outputLayer_output,不斷逼近給定的y值,從而訓練得到一個精準的模型的呢?

從圖中串起來的埠,可以想到一個過程:坐地鐵,將圖一想象為一條地鐵線路。王某某坐地鐵回家的一天:在input起點站上車,中途經過了很多站(hiddenLayer),然後發現坐過頭了(outputLayer對應現在的位置),那麼王某某將會根據現在的位置離家(目標Target)的距離(誤差Error),返回到中途的地鐵站(hiddenLayer)重新坐地鐵(誤差反向傳遞,使用梯度下降演算法更新w和b),如果王某某又一次發生失誤,那麼將再次進行這個調整的過程。

從在嬰兒拍打桌子和王某某坐地鐵的例子中,思考問題:BP的完整訓練,需要先傳入資料給input,再經過隱含層的對映,輸出層得到BP模擬值,根據模擬值與目標值的誤差,來調整引數,使得模擬值不斷逼近目標值。比如(1)嬰兒受到了外界的干擾因素(x),從而作出反應拍桌(predict),大腦不斷的調整胳膊位置,控制四肢拍準(y、Target)。(2)王某某上車點(x),過站點(predict),不斷返回中途站來調整位置,到家(y、Target)。

在這些環節中,涉及了影響因素資料x,目標值資料y(Target)。根據x,y,使用BP演算法來尋求x與y之間存在的規律,實現由x來對映逼近y,這就是BP神經網路演算法的作用。再多說一句,上述講的過程,都是BP模型訓練,那麼最終得到的模型雖然訓練準確,但是找到的規律(bp network)是否準確與可靠呢。於是,我們再給x1到訓練好的bp network中,得到相應的BP輸出值(預測值)predict1,通過作圖,計算Mse,Mape,R方等指標,來對比predict1和y1的接近程度,就可以知道模型是否預測準確。這是BP模型的測試過程,即實現對資料的預測,並且對比實際值檢驗預測是否準確。

圖一 3層BP神經網路結構圖

1.2 基於歷史值影響的BP神經網路

以電力負荷預測問題為例,進行兩種模型的區分。在預測某個時間段內的電力負荷時:

一種做法,是考慮t時刻的氣候因素指標,比如該時刻的空氣溼度x1,溫度x2,以及節假日x3等的影響,對t時刻的負荷值進行預測。這是前面1.1所說的模型。

另一種做法,是認為電力負荷值的變化,與時間相關,比如認為t-1,t-2,t-3時刻的電力負荷值與t時刻的負荷值有關係,即滿足公式y(t)=F(y(t-1),y(t-2),y(t-3))。採用BP神經網路進行訓練模型時,則輸入到神經網路的影響因素值為歷史負荷值y(t-1),y(t-2),y(t-3),特別地,3叫做自迴歸階數或者延遲。給到神經網路中的目標輸出值為y(t)。

二、鯨魚演算法

1、啟發

鯨魚優化演算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亞格里菲斯大學的Mirjalili等提出的一種新的群體智慧優化演算法,其優點在於操作簡單、引數少以及跳出區域性最優的能力強。​​

2、包圍獵物

座頭鯨能識別獵物的位置並圍著它們轉。由於最優位置在搜尋空間中的位置是未知的,WOA演算法假設當前的最佳候選解是目標獵物或接近最優解。在定義了最佳候選解之後,其他候選位置將嘗試向最佳位置移動並更新其位置。此行為由以下等式表示:

​​

3、狩獵行為

根據座頭鯨的狩獵行為,它是以螺旋運動遊向獵物,故狩獵行為的數學模型如下:

​​

4、搜尋獵物

數學模型如下:

​​

三、WOA優化BP神經網路的步驟

Step1:初始化BP神經網路的權值和閾值
Step2:計算鯨魚優化演算法的決策變數長度,選取均方誤差作為優化的目標函式。
Step3:設定演算法停止準則,使用遺傳優化演算法優化神經網路的權值和閾值引數。
Step4:將優化得到的權值和閾值引數賦給BP神經網路。
Step5:優化後的BP神經網路訓練與測試,與優化前的BP神經網路進行誤差分析和精度對比。

三、演示程式碼

%__________________________________________
% fobj = @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of generations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define lb and ub as two single number numbers

% To run ALO: [Best_score,Best_pos,cg_curve]=ALO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj,handles,value)

% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        All_fitness(1,i)=fitness;
        
        % Update the leader
        if fitness<Leader_score % Change this to > for maximization problem
            Leader_score=fitness; % Update alpha
            Leader_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(SearchAgents_no*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Leader_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
                
            end
            
        end
    end
    
    t=t+1;
    Convergence_curve(t)=Leader_score;
    
    if t>2
        line([t-1 t], [Convergence_curve(t-1) Convergence_curve(t)],'Color','b')
        xlabel('Iteration');
        ylabel('Best score obtained so far');        
        drawnow
    end
 
    
    set(handles.itertext,'String', ['The current iteration is ', num2str(t)])
    set(handles.optimumtext,'String', ['The current optimal value is ', num2str(Leader_score)])
    if value==1
        hold on
        scatter(t*ones(1,SearchAgents_no),All_fitness,'.','k')
    end
    
    
    
    
end



四、模擬結果

五、參考文獻及程式碼私信博主

《基於BP神經網路的寧夏水資源需求量預測》