【BP預測】基於鯨魚演算法優化BP神經網路實現資料預測matlab原始碼
一、 BP神經網路預測演算法簡介
說明:1.1節主要是概括和幫助理解考慮影響因素的BP神經網路演算法原理,即常規的BP模型訓練原理講解(可根據自身掌握的知識是否跳過)。1.2節開始講基於歷史值影響的BP神經網路預測模型。
使用BP神經網路進行預測時,從考慮的輸入指標角度,主要有兩類模型:
1.1 受相關指標影響的BP神經網路演算法原理
如圖一所示,使用MATLAB的newff函式訓練BP時,可以看到大部分情況是三層的神經網路(即輸入層,隱含層,輸出層)。這裡幫助理解下神經網路原理:
1)輸入層:相當於人的五官,五官獲取外部資訊,對應神經網路模型input埠接收輸入資料的過程。
2)隱含層:對應人的大腦,大腦對五官傳遞來的資料進行分析和思考,神經網路的隱含層hidden Layer對輸入層傳來的資料x進行對映,簡單理解為一個公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做權重、閾值引數,F()為對映規則,也叫啟用函式,hiddenLayer_output是隱含層對於傳來的資料對映的輸出值。換句話說,隱含層對於輸入的影響因素資料x進行了對映,產生了對映值。
3)輸出層:可以對應為人的四肢,大腦對五官傳來的資訊經過思考(隱含層對映)之後,再控制四肢執行動作(向外部作出響應)。類似地,BP神經網路的輸出層對hiddenLayer_output再次進行對映,outputLayer_output=w *hiddenLayer_output+b。其中,w、b為權重、閾值引數,outputLayer_output是神經網路輸出層的輸出值(也叫模擬值、預測值)(理解為,人腦對外的執行動作,比如嬰兒拍打桌子)。
4)梯度下降演算法:通過計算outputLayer_output和神經網路模型傳入的y值之間的偏差,使用演算法來相應調整權重和閾值等引數。這個過程,可以理解為嬰兒拍打桌子,打偏了,根據偏離的距離遠近,來調整身體使得再次揮動的胳膊不斷靠近桌子,最終打中。
再舉個例子來加深理解:
圖一所示BP神經網路,具備輸入層、隱含層和輸出層。BP是如何通過這三層結構來實現輸出層的輸出值outputLayer_output,不斷逼近給定的y值,從而訓練得到一個精準的模型的呢?
從圖中串起來的埠,可以想到一個過程:坐地鐵,將圖一想象為一條地鐵線路。王某某坐地鐵回家的一天:在input起點站上車,中途經過了很多站(hiddenLayer),然後發現坐過頭了(outputLayer對應現在的位置),那麼王某某將會根據現在的位置離家(目標Target)的距離(誤差Error),返回到中途的地鐵站(hiddenLayer)重新坐地鐵(誤差反向傳遞,使用梯度下降演算法更新w和b),如果王某某又一次發生失誤,那麼將再次進行這個調整的過程。
從在嬰兒拍打桌子和王某某坐地鐵的例子中,思考問題:BP的完整訓練,需要先傳入資料給input,再經過隱含層的對映,輸出層得到BP模擬值,根據模擬值與目標值的誤差,來調整引數,使得模擬值不斷逼近目標值。比如(1)嬰兒受到了外界的干擾因素(x),從而作出反應拍桌(predict),大腦不斷的調整胳膊位置,控制四肢拍準(y、Target)。(2)王某某上車點(x),過站點(predict),不斷返回中途站來調整位置,到家(y、Target)。
在這些環節中,涉及了影響因素資料x,目標值資料y(Target)。根據x,y,使用BP演算法來尋求x與y之間存在的規律,實現由x來對映逼近y,這就是BP神經網路演算法的作用。再多說一句,上述講的過程,都是BP模型訓練,那麼最終得到的模型雖然訓練準確,但是找到的規律(bp network)是否準確與可靠呢。於是,我們再給x1到訓練好的bp network中,得到相應的BP輸出值(預測值)predict1,通過作圖,計算Mse,Mape,R方等指標,來對比predict1和y1的接近程度,就可以知道模型是否預測準確。這是BP模型的測試過程,即實現對資料的預測,並且對比實際值檢驗預測是否準確。
圖一 3層BP神經網路結構圖
1.2 基於歷史值影響的BP神經網路
以電力負荷預測問題為例,進行兩種模型的區分。在預測某個時間段內的電力負荷時:
一種做法,是考慮t時刻的氣候因素指標,比如該時刻的空氣溼度x1,溫度x2,以及節假日x3等的影響,對t時刻的負荷值進行預測。這是前面1.1所說的模型。
另一種做法,是認為電力負荷值的變化,與時間相關,比如認為t-1,t-2,t-3時刻的電力負荷值與t時刻的負荷值有關係,即滿足公式y(t)=F(y(t-1),y(t-2),y(t-3))。採用BP神經網路進行訓練模型時,則輸入到神經網路的影響因素值為歷史負荷值y(t-1),y(t-2),y(t-3),特別地,3叫做自迴歸階數或者延遲。給到神經網路中的目標輸出值為y(t)。
二、鯨魚演算法
1、啟發
鯨魚優化演算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亞格里菲斯大學的Mirjalili等提出的一種新的群體智慧優化演算法,其優點在於操作簡單、引數少以及跳出區域性最優的能力強。
2、包圍獵物
座頭鯨能識別獵物的位置並圍著它們轉。由於最優位置在搜尋空間中的位置是未知的,WOA演算法假設當前的最佳候選解是目標獵物或接近最優解。在定義了最佳候選解之後,其他候選位置將嘗試向最佳位置移動並更新其位置。此行為由以下等式表示:
3、狩獵行為
根據座頭鯨的狩獵行為,它是以螺旋運動遊向獵物,故狩獵行為的數學模型如下:
4、搜尋獵物
數學模型如下:
三、WOA優化BP神經網路的步驟
Step1:初始化BP神經網路的權值和閾值
Step2:計算鯨魚優化演算法的決策變數長度,選取均方誤差作為優化的目標函式。
Step3:設定演算法停止準則,使用遺傳優化演算法優化神經網路的權值和閾值引數。
Step4:將優化得到的權值和閾值引數賦給BP神經網路。
Step5:優化後的BP神經網路訓練與測試,與優化前的BP神經網路進行誤差分析和精度對比。
三、演示程式碼
%__________________________________________ % fobj = @YourCostFunction % dim = number of your variables % Max_iteration = maximum number of generations % SearchAgents_no = number of search agents % lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n % ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n % If all the variables have equal lower bound you can just % define lb and ub as two single number numbers % To run ALO: [Best_score,Best_pos,cg_curve]=ALO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj) % The Whale Optimization Algorithm function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj,handles,value) % initialize position vector and score for the leader Leader_pos=zeros(1,dim); Leader_score=inf; %change this to -inf for maximization problems %Initialize the positions of search agents Positions=initialization(SearchAgents_no,dim,ub,lb); Convergence_curve=zeros(1,Max_iter); t=0;% Loop counter % Main loop while t<Max_iter for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); All_fitness(1,i)=fitness; % Update the leader if fitness<Leader_score % Change this to > for maximization problem Leader_score=fitness; % Update alpha Leader_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(SearchAgents_no*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Leader_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); end end end t=t+1; Convergence_curve(t)=Leader_score; if t>2 line([t-1 t], [Convergence_curve(t-1) Convergence_curve(t)],'Color','b') xlabel('Iteration'); ylabel('Best score obtained so far'); drawnow end set(handles.itertext,'String', ['The current iteration is ', num2str(t)]) set(handles.optimumtext,'String', ['The current optimal value is ', num2str(Leader_score)]) if value==1 hold on scatter(t*ones(1,SearchAgents_no),All_fitness,'.','k') end end
四、模擬結果
五、參考文獻及程式碼私信博主
《基於BP神經網路的寧夏水資源需求量預測》