1. 程式人生 > 其它 >文字分類(三):使用Pytorch進行文字分類——Transformer

文字分類(三):使用Pytorch進行文字分類——Transformer

一、前言

文字分類不是生成式的任務,因此只使用Transformer的編碼部分(Encoder)進行特徵提取。如果不熟悉Transformer模型的原理請移步

二、架構圖

三、程式碼

1、自注意力模型

class TextSlfAttnNet(nn.Module):
    ''' 自注意力模型 '''

    def __init__(self,
                 config: TextSlfAttnConfig,
                 char_size=5000,
                 pinyin_size=5000):
        super(TextSlfAttnNet, self).
__init__() # 字向量 self.char_embedding = nn.Embedding(char_size, config.embedding_size) # 拼音向量 self.pinyin_embedding = nn.Embedding(pinyin_size, config.embedding_size) # 位置向量 self.pos_embedding = nn.Embedding.from_pretrained( get_sinusoid_encoding_table(config.max_sen_len, config.embedding_size, padding_idx
=0), freeze=True) self.layer_stack = nn.ModuleList([ EncoderLayer(config.embedding_size, config.hidden_dims, config.n_heads, config.k_dims, config.v_dims, dropout=config.keep_dropout) for _ in range(config.hidden_layers) ]) self.fc_out = nn.Sequential( nn.Dropout(config.keep_dropout), nn.Linear(config.embedding_size, config.hidden_dims), nn.ReLU(inplace
=True), nn.Dropout(config.keep_dropout), nn.Linear(config.hidden_dims, config.num_classes), ) def forward(self, char_id, pinyin_id, pos_id): char_inputs = self.char_embedding(char_id) pinyin_iputs = self.pinyin_embedding(pinyin_id) sen_inputs = torch.cat((char_inputs, pinyin_iputs), dim=1) # sentence_length = sen_inputs.size()[1] # pos_id = torch.LongTensor(np.array([i for i in range(sentence_length)])) pos_inputs = self.pos_embedding(pos_id) # batch_size * sen_len * embedding_size inputs = sen_inputs + pos_inputs for layer in self.layer_stack: inputs, _ = layer(inputs) enc_outs = inputs.permute(0, 2, 1) enc_outs = torch.sum(enc_outs, dim=-1) return self.fc_out(enc_outs)

2、編碼層

class EncoderLayer(nn.Module):
    '''編碼層'''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        '''

        :param d_model: 模型輸入維度
        :param d_inner: 前饋神經網路隱層維度
        :param n_head:  多頭注意力
        :param d_k:     鍵向量
        :param d_v:     值向量
        :param dropout:
        '''
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None):
        '''

        :param enc_input:
        :param non_pad_mask:
        :param slf_attn_mask:
        :return:
        '''
        enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask)
        if non_pad_mask is not None:
            enc_output *= non_pad_mask

        enc_output = self.pos_ffn(enc_output)
        if non_pad_mask is not None:
            enc_output *= non_pad_mask
        return enc_output, enc_slf_attn

3、多頭注意力

class MultiHeadAttention(nn.Module):
    '''
        “多頭”注意力模型
    '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        '''

        :param n_head: “頭”數
        :param d_model: 輸入維度
        :param d_k: 鍵向量維度
        :param d_v: 值向量維度
        :param dropout:
        '''
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v
        # 產生 查詢向量q,鍵向量k, 值向量v
        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)

        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_normal = nn.LayerNorm(d_model)

        self.fc = nn.Linear(n_head * d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)

        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, mask=None):
        '''
        計算多頭注意力
        :param q: 用於產生  查詢向量
        :param k: 用於產生  鍵向量
        :param v:  用於產生 值向量
        :param mask:
        :return:
        '''
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head

        sz_b, len_q, _ = q.size()
        sz_b, len_k, _ = k.size()
        sz_b, len_v, _ = v.size()

        residual = q

        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # (n*b) x lq x dk
        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k)
        # (n*b) x lk x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k)
        # (n*b) x lv x dv
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v)

        # mask = mask.repeat(n_head, 1, 1)  # (n*b) x .. x ..
        #
        output, attn = self.attention(q, k, v, mask=None)
        # (n_heads * batch_size) * lq * dv
        output = output.view(n_head, sz_b, len_q, d_v)
        # batch_size * len_q * (n_heads * dv)
        output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
        output = self.dropout(self.fc(output))
        output = self.layer_normal(output + residual)
        return output, attn

4、前饋神經網路

class PositionwiseFeedForward(nn.Module):
    '''
        前饋神經網路
    '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        '''

        :param d_in:    輸入維度
        :param d_hid:   隱藏層維度
        :param dropout:
        '''
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Conv1d(d_in, d_hid, 1)
        self.w_2 = nn.Conv1d(d_hid, d_in, 1)
        self.layer_normal = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(F.relu(self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_normal(output + residual)
        return output

5、位置函式

def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    '''
    計算位置向量
    :param n_position:      位置的最大值
    :param d_hid:           位置向量的維度,和字向量維度相同(要相加求和)
    :param padding_idx: 
    :return: 
    '''

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return torch.FloatTensor(sinusoid_table)

四、經驗值

在分類任務中,與BILSTM+ATTENTION(連結)相比:

模型比LSTM大很多,同樣的任務LSTM模型6M左右,Transformer模型55M;
收斂速度比較慢;
超參比較多,不易調參,但同時也意味著彈性比較大;
效果和BILSTM模型差不多;