1. 程式人生 > 實用技巧 >程池中狀態與執行緒數的設計分析(ThreadPoolExecutor中ctl的設計分析)

程池中狀態與執行緒數的設計分析(ThreadPoolExecutor中ctl的設計分析)

目錄

預備知識

可以先看下我的另一篇文章對於Java中的位掩碼BitMask的解釋。

  • 1、一個整數在jvm中佔用了4個位元組,共32bits
  • 2、最高位的bit代表符號位,0為正數、1為負,剩餘的31bits則代表數字部分
  • 3、反碼加1即為補碼
  • 4、對於負數而言,是以補碼的形式儲存在記憶體中的。以-7(int)為例
    • 1)、將-7的絕對值轉化為二進位制:
      0000 0000 0000 0000 0000 0000 0000 0111
    • 2):將上面的二進位制以反碼錶示:
      1111 1111 1111 1111 1111 1111 1111 1000
    • 3):轉化為補碼:
      1111 1111 1111 1111 1111 1111 1111 1001

原始碼分析

我們把ThreadPoolExecutor中的狀態和狀態相關的方法複製出來,然後建立一個執行緒池,在執行中的時候分析執行緒池的狀態和執行緒數,於是有了下面例子:

@Slf4j
public class ThreadPoolExecutorCtlAnalysis {
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY = (1 << COUNT_BITS) - 1;// 000,11111111111111111111111111111

    // runState is stored in the high-order bits
    private static final int RUNNING = -1 << COUNT_BITS;  // 111,00000000000000000000000000000
    private static final int SHUTDOWN = 0 << COUNT_BITS;  // 000,00000000000000000000000000000
    private static final int STOP = 1 << COUNT_BITS;      // 001,00000000000000000000000000000
    private static final int TIDYING = 2 << COUNT_BITS;   // 010,00000000000000000000000000000
    private static final int TERMINATED = 3 << COUNT_BITS;// 011,00000000000000000000000000000

    // Packing and unpacking ctl

    // RUNNING(3'thread) 111,00000000000000000000000000011
    // ~CAPACITY         111,00000000000000000000000000000
    // RESULT            111,00000000000000000000000000000
    // 與操作取高位獲取的就是ctl中儲存的的執行緒池的狀態
    private static int runStateOf(int c) {
        return c & ~CAPACITY;
    }

    // RUNNING(3'thread) 111,00000000000000000000000000011
    // CAPACITY          000,11111111111111111111111111111
    // RESULT            000,00000000000000000000000000011
    // 與操作取低位獲取的就是ctl中儲存的worker數量
    private static int workerCountOf(int c) {
        return c & CAPACITY;
    }

    private static Runnable buildRunnableTask() {
        return () -> {
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.info("Task finished.");
        };
    }

    private static int getCtlValue(ThreadPoolExecutor executor, Field field) {
        //noinspection ConstantConditions
        return ((AtomicInteger) ReflectionUtils.getField(field, executor)).get();
    }

    private static String formatBinaryString(int state) {
        StringBuilder binaryString = new StringBuilder(Integer.toBinaryString(state));
        if (binaryString.length() < Integer.SIZE) {
            for (int i = binaryString.length(); i < Integer.SIZE; i++) {
                binaryString.insert(0, "0");
            }
        }
        return binaryString.substring(0, 3) + "," + binaryString.substring(3, Integer.SIZE);
    }

    private static void peekThreadPoolExecuteState(ThreadPoolExecutor executor, Field ctlField) {
        log.info("------------------- ThreadPoolExecuteState -------------------");
        int ctlValue = getCtlValue(executor, ctlField);
        log.info("getCtlValue  : {}", formatBinaryString(ctlValue));
        log.info("workerCountOf: {}", workerCountOf(ctlValue));
        log.info("Is    RUNNING: {}", runStateOf(ctlValue) == RUNNING);
        log.info("Is   SHUTDOWN: {}", runStateOf(ctlValue) == SHUTDOWN);
        log.info("Is       STOP: {}", runStateOf(ctlValue) == STOP);
        log.info("Is    TIDYING: {}", runStateOf(ctlValue) == TIDYING);
        log.info("Is TERMINATED: {}", runStateOf(ctlValue) == TERMINATED);
    }

    public static void main(String[] args) throws NoSuchFieldException, InterruptedException {
        // 打印出來看看幾種狀態的二進位制表示
        log.info("{} --> CAPACITY", formatBinaryString(CAPACITY));
        log.info("{} --> RUNNING", formatBinaryString(RUNNING));
        log.info("{} --> STOP", formatBinaryString(STOP));
        log.info("{} --> TERMINATED", formatBinaryString(TERMINATED));


        // 建立一個執行緒池,執行兩個任務
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                1, 2, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(1));
        executor.submit(buildRunnableTask());
        executor.submit(buildRunnableTask());
        executor.submit(buildRunnableTask());
        // 休眠一秒鐘,可以拿到中間狀態的ctl
        Thread.sleep(1000);
        log.info("getActiveCount(): {}", executor.getActiveCount());
        // 通過反射能拿到ThreadPoolExecutor的ctl的值
        Field ctlField = ThreadPoolExecutor.class.getDeclaredField("ctl");
        ctlField.setAccessible(true);
        // 執行緒池執行中的狀態可通過ctl拿到
        peekThreadPoolExecuteState(executor, ctlField);
        // 終止執行緒池,再來看看執行緒池中ctl的狀態
        executor.shutdownNow();
        peekThreadPoolExecuteState(executor, ctlField);
        // 休眠2秒鐘,看看執行緒池最終的狀態
        Thread.sleep(2000);
        peekThreadPoolExecuteState(executor, ctlField);
    }
}

在看執行結果之前,我們先看下ThreadPoolExecutor中的幾處涉及到狀態變更的方法實現。

submit()原始碼分析

public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    execute(ftask);
    return ftask;
}

最終呼叫的是內部的execute方法:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
 
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))
        reject(command);
}

這個方法不是特別複雜,我們本文的重點是要看看它的addWorker()方法,這個不復制太多邏輯,關鍵在兩行:

private boolean addWorker(Runnable firstTask, boolean core) {
    int c = ctl.get();
    ...
        compareAndIncrementWorkerCount(c)
    ...
}
private boolean compareAndIncrementWorkerCount(int expect) {
    return ctl.compareAndSet(expect, expect + 1);
}

這裡控制的是ctl中工作執行緒數(wc:WorkerCount)的變更,即整形低29位的自增不會影響到高3位的狀態:

RUNNING(0'wc) 111,00000000000000000000000000000
RUNNING(1'wc) 111,00000000000000000000000000001

所以可預見的輸出結果就是:

workerCountOf(): 1
Is Running: true
Is Stop: false

注意的是這些值都從ctl屬性中得來。

shutdownNow()原始碼分析

在我們的例子中,我們呼叫了shutdownNow()方法來改變執行緒池的狀態。

public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        advanceRunState(STOP);
        interruptWorkers();
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

這裡我們關注的是advanceRunState(STOP)方法:

/**
 * Transitions runState to given target, or leaves it alone if
 * already at least the given target.
 *
 * @param targetState the desired state, either SHUTDOWN or STOP
 *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
 */
private void advanceRunState(int targetState) {
    for (;;) {
        int c = ctl.get();
        if (runStateAtLeast(c, targetState) ||
            ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
            break;
    }
}

該方法最終是要把當前狀態變為STOP狀態。

注意點一:

ThreadPoolExecutor中狀態定義的值大小是有序的,即:

TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING(最高位1是負數)

注意點二:

advance的含意是推進、前進的意思,Java併發包裡的很多方法都使用了該命名,所以當前方法表示的意思是要推進執行狀態(advanceRunState),因此方法中才有了runStateAtLeast()判斷。
即要推進狀態,那如果當前狀態已經大於目標狀態了,本次方法直接跳過。否則才去做cas操作。這也正是原方法註釋想表達的意思。

注意點三:

最後在做cas操作的時候合併當前wc和rs的值,使用的是ctlOf方法:

private static int ctlOf(int rs, int wc) {
    return rs | wc;
}

通過與運算把RunState和WorkerCount的值合併到一處,即最終的ctl的值:

STOP      001,00000000000000000000000000000
WorkCount 000,00000000000000000000000000001
ctl value 001,00000000000000000000000000001

所以可預見的輸出結果就是:

workerCountOf(): 1
Is Running: false
Is Stop: true

程式碼輸出

12:56:19.473 [main] ThreadPoolExecutorCtlAnalysis - 000,11111111111111111111111111111 --> CAPACITY
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 111,00000000000000000000000000000 --> RUNNING
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 001,00000000000000000000000000000 --> STOP
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 011,00000000000000000000000000000 --> TERMINATED
12:56:20.520 [main] ThreadPoolExecutorCtlAnalysis - getActiveCount(): 2
12:56:20.520 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 111,00000000000000000000000000010
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 2
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: true
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 001,00000000000000000000000000010
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 2
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: true
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: false
12:56:20.534 [pool-1-thread-1] ThreadPoolExecutorCtlAnalysis - Task finished.
12:56:20.534 [pool-1-thread-2] ThreadPoolExecutorCtlAnalysis - Task finished.
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 011,00000000000000000000000000000
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 0
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: true

可以看到使用ctl一個欄位可以獲取到兩個值,並且這兩個值不會有併發不一致的情況,每次都是一次cas更新值。

設計目的與優點

執行緒池自身的狀態和執行緒數量都維護在一個原子變數ctl中,目的不是為了減少儲存空間,而是將執行緒池狀態與執行緒個數合二為一,這樣就可以用一次cas原子操作進行賦值,更容易保證在多執行緒環境下保證執行狀態和執行緒數量的統一。這真是大師的設計智慧啊!