1. 程式人生 > 其它 >mask rcnn 不規則的物體標註,訓練模型,驗證

mask rcnn 不規則的物體標註,訓練模型,驗證

she

1. 下載labelme

# Ubuntu

sudo apt-get install python3-pyqt5  # PyQt5
sudo pip3 install labelme

# Windows

pip install labelme

2. 呼叫 labelme

1. 呼叫cmd模組

2. labelme

3. 得到 .JSON 檔案

  通過修改labelme中的檔案來批量處理json檔案

    1. 修改json_to_dataset.py檔案(位置:D:\Python3.6\Lib\site-packages\labelme\cli或其它安裝位置)

    2. cd到D:\Python3.6\Scripts下,使用:D:\Python3.6\Scripts>輸入: label_json_to_dataset.exe 目標json資料夾

import argparse
import json
import os
import os.path as osp
import warnings
 
import PIL.Image
import yaml
 
from labelme import utils
import base64
 
def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n
" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir
= osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) count = os.listdir(json_file) for i in range(0, len(count)): path = os.path.join(json_file, count[i]) if os.path.isfile(path): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(count[i]).replace('.', '_') out_dir = osp.join(osp.dirname(count[i]), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir) if __name__ == '__main__': main()

  

    3. 每個json檔案生成一個_json資料夾,包含五個不同的資料檔案

    

    4. 調整資料結構

    

4. 使用mask rcnn網路來訓練資料集

    1. 下載mask rcnn網路

    2. 修改samples / shapes / train_shape.py中的引數,如資料集位置,模型儲存位置,訓練時引數等

    3. 使用test_shape.py來驗證模型效果