IDA常見巨集定義(轉載)
阿新 • • 發佈:2021-11-13
一些IDA巨集定義,背不掉所以直接Backup一份QWQ
/* This file contains definitions used by the Hex-Rays decompiler output. It has type definitions and convenience macros to make the output more readable. Copyright © 2007-2011 Hex-Rays */ #if defined(GNUC) typedef long long ll; typedef unsigned long long ull; #define __int64 long long #define __int32 int #define __int16 short #define __int8 char #define MAKELL(num) num ## LL #define FMT_64 “ll” #elif defined(_MSC_VER) typedef __int64 ll; typedef unsigned __int64 ull; #define MAKELL(num) num ## i64 #define FMT_64 “I64” #elif defined (BORLANDC) typedef __int64 ll; typedef unsigned __int64 ull; #define MAKELL(num) num ## i64 #define FMT_64 “L” #else #error “unknown compiler” #endif typedef unsigned int uint; typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned long ulong; typedef char int8; typedef signed char sint8; typedef unsigned char uint8; typedef short int16; typedef signed short sint16; typedef unsigned short uint16; typedef int int32; typedef signed int sint32; typedef unsigned int uint32; typedef ll int64; typedef ll sint64; typedef ull uint64; // Partially defined types: #define _BYTE uint8 #define _WORD uint16 #define _DWORD uint32 #define _QWORD uint64 #if !defined(_MSC_VER) #define _LONGLONG __int128 #endif #ifndef WINDOWS typedef int8 BYTE; typedef int16 WORD; typedef int32 DWORD; typedef int32 LONG; #endif typedef int64 QWORD; #ifndef __cplusplus typedef int bool; // we want to use bool in our C programs #endif // Some convenience macros to make partial accesses nicer // first unsigned macros: #define LOBYTE(x) (((_BYTE)&(x))) // low byte #define LOWORD(x) (((_WORD)&(x))) // low word #define LODWORD(x) (((_DWORD)&(x))) // low dword #define HIBYTE(x) (((_BYTE)&(x)+1)) #define HIWORD(x) (((_WORD)&(x)+1)) #define HIDWORD(x) (((_DWORD)&(x)+1)) #define BYTEn(x, n) (((_BYTE)&(x)+n)) #define WORDn(x, n) (((_WORD)&(x)+n)) #define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0) #define BYTE2(x) BYTEn(x, 2) #define BYTE3(x) BYTEn(x, 3) #define BYTE4(x) BYTEn(x, 4) #define BYTE5(x) BYTEn(x, 5) #define BYTE6(x) BYTEn(x, 6) #define BYTE7(x) BYTEn(x, 7) #define BYTE8(x) BYTEn(x, 8) #define BYTE9(x) BYTEn(x, 9) #define BYTE10(x) BYTEn(x, 10) #define BYTE11(x) BYTEn(x, 11) #define BYTE12(x) BYTEn(x, 12) #define BYTE13(x) BYTEn(x, 13) #define BYTE14(x) BYTEn(x, 14) #define BYTE15(x) BYTEn(x, 15) #define WORD1(x) WORDn(x, 1) #define WORD2(x) WORDn(x, 2) // third word of the object, unsigned #define WORD3(x) WORDn(x, 3) #define WORD4(x) WORDn(x, 4) #define WORD5(x) WORDn(x, 5) #define WORD6(x) WORDn(x, 6) #define WORD7(x) WORDn(x, 7) // now signed macros (the same but with sign extension) #define SLOBYTE(x) (((int8)&(x))) #define SLOWORD(x) (((int16)&(x))) #define SLODWORD(x) (((int32)&(x))) #define SHIBYTE(x) (((int8)&(x)+1)) #define SHIWORD(x) (((int16)&(x)+1)) #define SHIDWORD(x) (((int32)&(x)+1)) #define SBYTEn(x, n) (((int8)&(x)+n)) #define SWORDn(x, n) (((int16)&(x)+n)) #define SBYTE1(x) SBYTEn(x, 1) #define SBYTE2(x) SBYTEn(x, 2) #define SBYTE3(x) SBYTEn(x, 3) #define SBYTE4(x) SBYTEn(x, 4) #define SBYTE5(x) SBYTEn(x, 5) #define SBYTE6(x) SBYTEn(x, 6) #define SBYTE7(x) SBYTEn(x, 7) #define SBYTE8(x) SBYTEn(x, 8) #define SBYTE9(x) SBYTEn(x, 9) #define SBYTE10(x) SBYTEn(x, 10) #define SBYTE11(x) SBYTEn(x, 11) #define SBYTE12(x) SBYTEn(x, 12) #define SBYTE13(x) SBYTEn(x, 13) #define SBYTE14(x) SBYTEn(x, 14) #define SBYTE15(x) SBYTEn(x, 15) #define SWORD1(x) SWORDn(x, 1) #define SWORD2(x) SWORDn(x, 2) #define SWORD3(x) SWORDn(x, 3) #define SWORD4(x) SWORDn(x, 4) #define SWORD5(x) SWORDn(x, 5) #define SWORD6(x) SWORDn(x, 6) #define SWORD7(x) SWORDn(x, 7) // Helper functions to represent some assembly instructions. #ifdef __cplusplus // Fill memory block with an integer value inline void memset32(void *ptr, uint32 value, int count) { uint32 *p = (uint32 *)ptr; for ( int i=0; i < count; i++ ) *p++ = value; } // Generate a reference to pair of operands template int16 PAIR( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); } template int32 PAIR( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); } template int64 PAIR( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); } template uint16 PAIR(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); } template uint32 PAIR(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); } template uint64 PAIR(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); } // rotate left template T ROL(T value, uint count) { const uint nbits = sizeof(T) * 8; count %= nbits; T high = value >> (nbits - count); value <<= count; value |= high; return value; } // rotate right template T ROR(T value, uint count) { const uint nbits = sizeof(T) * 8; count %= nbits; T low = value << (nbits - count); value >>= count; value |= low; return value; } // carry flag of left shift template int8 MKCSHL(T value, uint count) { const uint nbits = sizeof(T) * 8; count %= nbits; return (value >> (nbits-count)) & 1; } // carry flag of right shift template int8 MKCSHR(T value, uint count) { return (value >> (count-1)) & 1; } // sign flag template int8 SETS(T x) { if ( sizeof(T) == 1 ) return int8(x) < 0; if ( sizeof(T) == 2 ) return int16(x) < 0; if ( sizeof(T) == 4 ) return int32(x) < 0; return int64(x) < 0; } // overflow flag of subtraction (x-y) template<class T, class U> int8 OFSUB(T x, U y) { if ( sizeof(T) < sizeof(U) ) { U x2 = x; int8 sx = SETS(x2); return (sx ^ SETS(y)) & (sx ^ SETS(x2-y)); } else { T y2 = y; int8 sx = SETS(x); return (sx ^ SETS(y2)) & (sx ^ SETS(x-y2)); } } // overflow flag of addition (x+y) template<class T, class U> int8 OFADD(T x, U y) { if ( sizeof(T) < sizeof(U) ) { U x2 = x; int8 sx = SETS(x2); return ((1 ^ sx) ^ SETS(y)) & (sx ^ SETS(x2+y)); } else { T y2 = y; int8 sx = SETS(x); return ((1 ^ sx) ^ SETS(y2)) & (sx ^ SETS(x+y2)); } } // carry flag of subtraction (x-y) template<class T, class U> int8 CFSUB(T x, U y) { int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U); if ( size == 1 ) return uint8(x) < uint8(y); if ( size == 2 ) return uint16(x) < uint16(y); if ( size == 4 ) return uint32(x) < uint32(y); return uint64(x) < uint64(y); } // carry flag of addition (x+y) template<class T, class U> int8 CFADD(T x, U y) { int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U); if ( size == 1 ) return uint8(x) > uint8(x+y); if ( size == 2 ) return uint16(x) > uint16(x+y); if ( size == 4 ) return uint32(x) > uint32(x+y); return uint64(x) > uint64(x+y); } #else // The following definition is not quite correct because it always returns // uint64. The above C++ functions are good, though. #define PAIR(high, low) (((uint64)(high)<<sizeof(high)*8) | low) // For C, we just provide macros, they are not quite correct. #define ROL(x, y) rotl(x, y) // Rotate left #define ROR(x, y) rotr(x, y) // Rotate right #define CFSHL(x, y) invalid_operation // Generate carry flag for (x<<y) #define CFSHR(x, y) invalid_operation // Generate carry flag for (x>>y) #define CFADD(x, y) invalid_operation // Generate carry flag for (x+y) #define CFSUB(x, y) invalid_operation // Generate carry flag for (x-y) #define OFADD(x, y) invalid_operation // Generate overflow flag for (x+y) #define OFSUB(x, y) invalid_operation // Generate overflow flag for (x-y) #endif // No definition for rcl/rcr because the carry flag is unknown #define RCL(x, y) invalid_operation // Rotate left thru carry #define RCR(x, y) invalid_operation // Rotate right thru carry #define MKCRCL(x, y) invalid_operation // Generate carry flag for a RCL #define MKCRCR(x, y) invalid_operation // Generate carry flag for a RCR #define SETP(x, y) invalid_operation // Generate parity flag for (x-y) // In the decompilation listing there are some objects declarared as _UNKNOWN // because we could not determine their types. Since the C compiler does not // accept void item declarations, we replace them by anything of our choice, // for example a char: #define _UNKNOWN char #ifdef _MSC_VER #define snprintf _snprintf #define vsnprintf _vsnprintf #endif
原文連結:https://blog.csdn.net/u011478909/article/details/53540196