1. 程式人生 > 其它 >IDA常見巨集定義(轉載)

IDA常見巨集定義(轉載)

一些IDA巨集定義,背不掉所以直接Backup一份QWQ

/*

This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable.

Copyright © 2007-2011 Hex-Rays

*/

#if defined(GNUC)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
#define __int32 int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 “ll”
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 “I64”
#elif defined (BORLANDC)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 “L”
#else
#error “unknown compiler”
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;

typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64;

// Partially defined types:
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif

#ifndef WINDOWS
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif

// Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x) (((_BYTE)&(x))) // low byte
#define LOWORD(x) (((_WORD)&(x))) // low word
#define LODWORD(x) (((_DWORD)&(x))) // low dword
#define HIBYTE(x) (((_BYTE)&(x)+1))
#define HIWORD(x) (((_WORD)&(x)+1))
#define HIDWORD(x) (((_DWORD)&(x)+1))
#define BYTEn(x, n) (((_BYTE)&(x)+n))
#define WORDn(x, n) (((_WORD)&(x)+n))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7)

// now signed macros (the same but with sign extension)
#define SLOBYTE(x) (((int8)&(x)))
#define SLOWORD(x) (((int16)&(x)))
#define SLODWORD(x) (((int32)&(x)))
#define SHIBYTE(x) (((int8)&(x)+1))
#define SHIWORD(x) (((int16)&(x)+1))
#define SHIDWORD(x) (((int32)&(x)+1))
#define SBYTEn(x, n) (((int8)&(x)+n))
#define SWORDn(x, n) (((int16)&(x)+n))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7)

// Helper functions to represent some assembly instructions.

#ifdef __cplusplus

// Fill memory block with an integer value
inline void memset32(void *ptr, uint32 value, int count)
{
uint32 *p = (uint32 *)ptr;
for ( int i=0; i < count; i++ )
*p++ = value;
}

// Generate a reference to pair of operands
template int16 PAIR( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }
template int32 PAIR( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }
template int64 PAIR( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }
template uint16 PAIR(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }
template uint32 PAIR(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }
template uint64 PAIR(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); }

// rotate left
template T ROL(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits;

T high = value >> (nbits - count);
value <<= count;
value |= high;
return value;
}

// rotate right
template T ROR(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits;

T low = value << (nbits - count);
value >>= count;
value |= low;
return value;
}

// carry flag of left shift
template int8 MKCSHL(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits;

return (value >> (nbits-count)) & 1;
}

// carry flag of right shift
template int8 MKCSHR(T value, uint count)
{
return (value >> (count-1)) & 1;
}

// sign flag
template int8 SETS(T x)
{
if ( sizeof(T) == 1 )
return int8(x) < 0;
if ( sizeof(T) == 2 )
return int16(x) < 0;
if ( sizeof(T) == 4 )
return int32(x) < 0;
return int64(x) < 0;
}

// overflow flag of subtraction (x-y)
template<class T, class U> int8 OFSUB(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = SETS(x2);
return (sx ^ SETS(y)) & (sx ^ SETS(x2-y));
}
else
{
T y2 = y;
int8 sx = SETS(x);
return (sx ^ SETS(y2)) & (sx ^ SETS(x-y2));
}
}

// overflow flag of addition (x+y)
template<class T, class U> int8 OFADD(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = SETS(x2);
return ((1 ^ sx) ^ SETS(y)) & (sx ^ SETS(x2+y));
}
else
{
T y2 = y;
int8 sx = SETS(x);
return ((1 ^ sx) ^ SETS(y2)) & (sx ^ SETS(x+y2));
}
}

// carry flag of subtraction (x-y)
template<class T, class U> int8 CFSUB(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) < uint8(y);
if ( size == 2 )
return uint16(x) < uint16(y);
if ( size == 4 )
return uint32(x) < uint32(y);
return uint64(x) < uint64(y);
}

// carry flag of addition (x+y)
template<class T, class U> int8 CFADD(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) > uint8(x+y);
if ( size == 2 )
return uint16(x) > uint16(x+y);
if ( size == 4 )
return uint32(x) > uint32(x+y);
return uint64(x) > uint64(x+y);
}

#else
// The following definition is not quite correct because it always returns
// uint64. The above C++ functions are good, though.
#define PAIR(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
// For C, we just provide macros, they are not quite correct.
#define ROL(x, y) rotl(x, y) // Rotate left
#define ROR(x, y) rotr(x, y) // Rotate right
#define CFSHL(x, y) invalid_operation // Generate carry flag for (x<<y)
#define CFSHR(x, y) invalid_operation // Generate carry flag for (x>>y)
#define CFADD(x, y) invalid_operation // Generate carry flag for (x+y)
#define CFSUB(x, y) invalid_operation // Generate carry flag for (x-y)
#define OFADD(x, y) invalid_operation // Generate overflow flag for (x+y)
#define OFSUB(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif

// No definition for rcl/rcr because the carry flag is unknown
#define RCL(x, y) invalid_operation // Rotate left thru carry
#define RCR(x, y) invalid_operation // Rotate right thru carry
#define MKCRCL(x, y) invalid_operation // Generate carry flag for a RCL
#define MKCRCR(x, y) invalid_operation // Generate carry flag for a RCR
#define SETP(x, y) invalid_operation // Generate parity flag for (x-y)

// In the decompilation listing there are some objects declarared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char:

#define _UNKNOWN char

#ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif

原文連結:https://blog.csdn.net/u011478909/article/details/53540196