1. 程式人生 > 其它 >在windows 10 下使用qemu 虛擬化 arm/amd cpu 架構

在windows 10 下使用qemu 虛擬化 arm/amd cpu 架構

emm……推導過程什麼的左轉去看各位神犇的部落格吧QwQ

這裡只貼程式碼(以後有時間的話可能會寫寫推導過程)。

首先是喜聞樂見的 NTT 多項式乘法 及 求逆 板子:

namespace NTT{
    ll lim, len;

    inline ll qpow(ll a, ll b){
        ll res = 1;
        while(b){
            if(b & 1) res = res * a % mod;
            a = a * a % mod, b >>= 1;
        }
        return res;
    }

    inline void get_rev(cl n){
        lim = 1, len = 0;
        while(lim < n) lim <<= 1, ++len;
        for(int i = 0; i < lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1));
    }

    inline void ntt(ll A[], cl lim, cl type){
        for(int i = 0; i < lim; ++i)
            if(i < p[i]) swap(A[i], A[p[i]]);
        for(int mid = 1; mid < lim; mid <<= 1){
            ll Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1));
            for(int i = 0; i < lim; i += (mid << 1)){
                ll w = 1;
                for(int j = 0; j < mid; ++j, w = w * Wn % mod){
                    ll x = A[i + j], y = w * A[i + j + mid] % mod;
                    A[i + j] = (x + y) % mod;
                    A[i + j + mid] = (x - y + mod) % mod;
                }
            }
        }
        if(type == 1) return;
        ll inv = qpow(lim, mod - 2);
        for(int i = 0; i < lim; ++i) A[i] = A[i] * inv % mod;
    }

    inline void Mul(cl n, cl m, ll a[], ll b[]){
        get_rev(n + m);
        ntt(a, lim, 1), ntt(b, lim, 1);
        for(int i = 0; i < lim; ++i) a[i] = a[i] * b[i] % mod;
        ntt(a, lim, -1);
    }

    inline void Inv(ll n, ll a[], ll b[]){
        if(n == 1) return b[0] = qpow(a[0], mod - 2), void();
        Inv((n + 1) >> 1, a, b);
        get_rev(n << 1);
        for(int i = 0; i < n; ++i) c[i] = a[i];
        for(int i = n; i < lim; ++i) c[i] = 0;
        ntt(c, lim, 1), ntt(b, lim, 1);
        for(int i = 0; i < lim; ++i)
            b[i] = (2ll - c[i] * b[i] % mod + mod) * b[i] % mod;
        ntt(b, lim, -1);
        for(int i = n; i < lim; ++i) b[i] = 0;
    }
}
using namespace NTT;

然後是多項式開根

inline void Sqrt(cl n, ll a[], ll b[]){
    if(n == 1) return b[0] = 1, void();
    Sqrt((n + 1) >> 1, a, b);
    get_rev(n << 1);
    memset(f, 0, sizeof(f));
    Inv(n, b, f);//f(x) 是 b(x) 的逆多項式
    for(int i = 0; i < n; ++i) d[i] = a[i];
    for(int i = n; i < lim; ++i) d[i] = 0;
    ntt(d, lim, 1), ntt(b, lim, 1), ntt(f, lim, 1);
    for(int i = 0; i < lim; ++i)
        b[i] = (b[i] + d[i] * f[i] % mod) * inv2 % mod;
    ntt(b, lim, -1);
    for(int i = n; i < lim; ++i) b[i] = 0;
}

接著自然是是求 ln

namespace Ln{
    inline void Diff(cl n, ll a[], ll b[]){//微分求導
        for(int i = 1; i < n; ++i) b[i - 1] = i * a[i];
        b[n - 1] = 0;
    }

    inline void Integral(cl n, ll a[], ll b[]){//積分
        for(int i = 1; i < n; ++i) b[i] = a[i - 1] * qpow(i, mod - 2) % mod;
        b[0] = 0;
    }

    inline void ln(cl n, ll a[], ll b[]){
        memset(f1, 0, sizeof(f1));
        memset(f2, 0, sizeof(f2));
        Diff(n, a, f1), Inv(n, a, f2);//f1(x) = a'(x),f2(x) = a(x)^(-1)
        Mul(n, n, f1, f2);//f1(x) = f1(x) * f2(x)
        Integral(n, f1, b);//g(x) = f(x) 的積分
    }
}
using namespace Ln;

exp 當然也不能少

inline void Exp(cl n, ll a[], ll b[]){
    if(n == 1) return b[0] = 1, void();
    Exp((n + 1) >> 1, a, b);
    get_rev(n << 1);
    ln(n, b, d);// d(x) = ln(b(x))
    for(int i = 0; i < n; ++i) e[i] = a[i];
    for(int i = n; i < lim; ++i) e[i] = 0;
    ntt(d, lim, 1), ntt(e, lim, 1), ntt(b, lim, 1);
    for(int i = 0; i < lim; ++i) b[i] = (1ll - d[i] + e[i] + mod) * b[i] % mod;
    ntt(b, lim, -1);
    for(int i = n; i < lim; ++i) b[i] = 0;
}

最後是多項式除法

除法由於其優秀的邊界故不和上面放到一起,並且這裡給出完整程式碼。

#include <bits/stdc++.h>
#define ll long long
#define cl const long long

using namespace std;

namespace IO{
    inline ll read(){
        ll x = 0;
        char ch = getchar();
        while(!isdigit(ch)) ch = getchar();
        while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
        return x;
    }

    template <typename T> inline void write(T x){
        if(x > 9) write(x / 10);
        putchar(x % 10 + '0');
    }
}
using namespace IO;

const ll N = 3e5 + 10;
const ll mod = 998244353;
const ll G = 3, Gi = 332748118;
ll n, m;
ll f[N], g[N], fr[N], gr[N];
ll gi[N], c[N], q[N], r[N], p[N];

namespace NTT{
    int lim, len;

    inline ll qpow(ll a, ll gi){
        ll res = 1;
        while(gi){
            if(gi & 1) res = res * a % mod;
            gi >>= 1, a = a * a % mod;
        }
        return res;
    }

    inline void get_rev(cl n){
        lim = 1, len = 0;
        while(lim <= n) lim <<= 1, ++len;
        for(int i = 0; i <= lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1));
    }

    inline void ntt(ll A[], cl lim, cl type){
        for(ll i = 0; i <= lim; ++i)
            if(i < p[i]) swap(A[i], A[p[i]]);
        for(ll mid = 1; mid < lim; mid <<= 1){
            ll Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1));
            for(ll i = 0; i < lim; i += (mid << 1)){
                ll w = 1;
                for(ll j = 0; j < mid; ++j, w = w * Wn % mod){
                    ll x = A[i + j], y = w * A[i + j + mid] % mod;
                    A[i + j] = (x + y) % mod;
                    A[i + j + mid] = (x - y + mod) % mod;
                }
            }
        }
        if(type == 1) return;
        ll inv = qpow(lim, mod - 2);
        for(int i = 0; i <= lim; ++i) A[i] = A[i] * inv % mod;
    }

    inline void Mul(cl n, cl m, ll a[], ll b[]){
        get_rev(n + m);
        ntt(a, lim, 1), ntt(b, lim, 1);
        for(ll i = 0; i <= lim; ++i)
            a[i] = a[i] * b[i] % mod;
        ntt(a, lim, -1);
    }

    inline void Inv(cl n, ll a[], ll b[]){
        if(n == 0) return b[0] = qpow(a[0], mod - 2), void();
        Inv(n >> 1, a, b);
        get_rev(n << 1);
        for(ll i = 0; i <= n; ++i) c[i] = a[i];
        for(ll i = n + 1; i <= lim; ++i) c[i] = 0;
        ntt(c, lim, 1), ntt(b, lim, 1);
        for(ll i = 0; i <= lim; ++i)
            b[i] = (2 - c[i] * b[i] % mod + mod) * b[i] % mod;
        ntt(b, lim, -1);
        for(ll i = n + 1; i <= lim; ++i) b[i] = 0;
    }
}
using namespace NTT;

inline void solve(){
    for(ll i = n - m + 1; i <= m; ++i) gr[i] = 0;
    Inv(n - m, gr, gi);
    Mul(n, n - m, fr, gi);
    for(ll i = 0; i <= n - m; ++i) write(q[i] = fr[n - m - i]), putchar(' ');
    puts("");
    Mul(m, n - m, g, q);
    for(ll i = 0; i < m; ++i) write((f[i] - g[i] + mod) % mod), putchar(' ');
    puts("");

}

signed main(){
    n = read(), m = read();
    for(ll i = 0; i <= n; ++i) f[i] = read(), fr[n - i] = f[i];
    for(ll i = 0; i <= m; ++i) g[i] = read(), gr[m - i] = g[i];
    solve();
    return 0;
}

本文來自部落格園,作者:xixike,轉載請註明原文連結:https://www.cnblogs.com/xixike/p/15614455.html