記錄一下雪花演算法的原理and Java實現
1.基本瞭解:
SnowFlake 演算法,是 Twitter 開源的分散式 id 生成演算法。其核心思想就是:使用一個 64 bit 的 long 型的數字作為全域性唯一 id。
在分散式系統中的應用十分廣泛,且ID 引入了時間戳,基本上保持自增的,後面的程式碼中有詳細的註解。
2.解釋:
這 64 個 bit 中,其中 1 個 bit 是不用的,然後用其中的 41 bit 作為毫秒數,用 10 bit 作為工作機器 id,12 bit 作為序列號。
如:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000
比如下面那個 64 bit 的 long 型數字:
第一個部分,是 1 個 bit:0,這個是無意義的。
第二個部分是 41 個 bit:表示的是時間戳。
第三個部分是 5 個 bit:表示的是機房 id,10001。
第四個部分是 5 個 bit:表示的是機器 id,1 1001。
第五個部分是 12 個 bit:表示的序號,就是某個機房某臺機器上這一毫秒內同時生成的 id 的序號,0000 00000000。
問題:1 bit:是不用的,為啥呢?
因為二進位制裡第一個 bit 為如果是 1,那麼都是負數,但是我們生成的 id 都是正數,所以第一個 bit 統一都是 0。
41 bit:表示的是時間戳,單位是毫秒。
41 bit 可以表示的數字多達 2^41 - 1,也就是可以標識 2 ^ 41 - 1 個毫秒值,換算成年就是表示 69 年的時間。
10 bit:記錄工作機器 id,代表的是這個服務最多可以部署在 2^10 臺機器上,也就是 1024 臺機器。
10 bit 裡 5 個 bit 代表機房 id,5 個 bit 代表機器 id。意思就是最多代表 2 ^ 5 個機房(32 個機房),每個機房裡可以代表 2 ^ 5 個機器(32 臺機器),也可以根據自己公司的實際情況確定。
12 bit:這個是用來記錄同一個毫秒內產生的不同 id。
12 bit 可以代表的最大正整數是 2 ^ 12 - 1 = 4096,也就是說可以用這個 12 bit 代表的數字來區分同一個毫秒內的 4096 個不同的 id。
簡單來說,你的某個服務假設要生成一個全域性唯一 id,那麼就可以傳送一個請求給部署了 SnowFlake 演算法的系統,由這個 SnowFlake 算法系統來生成唯一 id。
這個 SnowFlake 算法系統首先肯定是知道自己所在的機房和機器的,比如機房 id = 17,機器 id = 12。
接著 SnowFlake 算法系統接收到這個請求之後,首先就會用二進位制位運算的方式生成一個 64 bit 的 long 型 id,64 個 bit 中的第一個 bit 是無意義的。
接著 41 個 bit,就可以用當前時間戳(單位到毫秒),然後接著 5 個 bit 設定上這個機房 id,還有 5 個 bit 設定上機器 id。
最後再判斷一下,當前這臺機房的這臺機器上這一毫秒內,這是第幾個請求,給這次生成 id 的請求累加一個序號,作為最後的 12 個 bit。
最終一個 64 個 bit 的 id 就出來了,類似於:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000
***********
這個演算法可以保證說,一個機房的一臺機器上,在同一毫秒內,生成了一個唯一的 id。可能一個毫秒內會生成多個 id,但是有最後 12 個 bit 的序號來區分開來。
下面我們簡單看看這個 SnowFlake 演算法的一個程式碼實現,這就是個示例,大家如果理解了這個意思之後,以後可以自己嘗試改造這個演算法。
總之就是用一個 64 bit 的數字中各個 bit 位來設定不同的標誌位,區分每一個 id
SnowFlake JAVA演算法的實現程式碼如下:
public class IdWorker{
//下面兩個每個5位,加起來就是10位的工作機器id
private long workerId; //工作id
private long datacenterId; //資料id
//12位的序列號
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
//初始時間戳
private long twepoch = 1288834974657L;
//長度為5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列號id長度
private long sequenceBits = 12L;
//序列號最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);
//工作id需要左移的位數,12位
private long workerIdShift = sequenceBits;
//資料id需要左移位數 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//時間戳需要左移位數 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//上次時間戳,初始值為負數
private long lastTimestamp = -1L;
public long getWorkerId(){
return workerId;
}
public long getDatacenterId(){
return datacenterId;
}
public long getTimestamp(){
return System.currentTimeMillis();
}
//下一個ID生成演算法
public synchronized long nextId() {
long timestamp = timeGen();
//獲取當前時間戳如果小於上次時間戳,則表示時間戳獲取出現異常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format