1. 程式人生 > 其它 >記錄一下雪花演算法的原理and Java實現

記錄一下雪花演算法的原理and Java實現

1.基本瞭解:

SnowFlake 演算法,是 Twitter 開源的分散式 id 生成演算法。其核心思想就是:使用一個 64 bit 的 long 型的數字作為全域性唯一 id。

在分散式系統中的應用十分廣泛,且ID 引入了時間戳,基本上保持自增的,後面的程式碼中有詳細的註解。

2.解釋:
這 64 個 bit 中,其中 1 個 bit 是不用的,然後用其中的 41 bit 作為毫秒數,用 10 bit 作為工作機器 id,12 bit 作為序列號。
如:

0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000

比如下面那個 64 bit 的 long 型數字:

第一個部分,是 1 個 bit:0,這個是無意義的。

第二個部分是 41 個 bit:表示的是時間戳。

第三個部分是 5 個 bit:表示的是機房 id,10001。

第四個部分是 5 個 bit:表示的是機器 id,1 1001。

第五個部分是 12 個 bit:表示的序號,就是某個機房某臺機器上這一毫秒內同時生成的 id 的序號,0000 00000000。

問題:1 bit:是不用的,為啥呢?

因為二進位制裡第一個 bit 為如果是 1,那麼都是負數,但是我們生成的 id 都是正數,所以第一個 bit 統一都是 0。

41 bit:表示的是時間戳,單位是毫秒。

41 bit 可以表示的數字多達 2^41 - 1,也就是可以標識 2 ^ 41 - 1 個毫秒值,換算成年就是表示 69 年的時間。

10 bit:記錄工作機器 id,代表的是這個服務最多可以部署在 2^10 臺機器上,也就是 1024 臺機器。

10 bit 裡 5 個 bit 代表機房 id,5 個 bit 代表機器 id。意思就是最多代表 2 ^ 5 個機房(32 個機房),每個機房裡可以代表 2 ^ 5 個機器(32 臺機器),也可以根據自己公司的實際情況確定。

12 bit:這個是用來記錄同一個毫秒內產生的不同 id。

12 bit 可以代表的最大正整數是 2 ^ 12 - 1 = 4096,也就是說可以用這個 12 bit 代表的數字來區分同一個毫秒內的 4096 個不同的 id。

簡單來說,你的某個服務假設要生成一個全域性唯一 id,那麼就可以傳送一個請求給部署了 SnowFlake 演算法的系統,由這個 SnowFlake 算法系統來生成唯一 id。
這個 SnowFlake 算法系統首先肯定是知道自己所在的機房和機器的,比如機房 id = 17,機器 id = 12。

接著 SnowFlake 算法系統接收到這個請求之後,首先就會用二進位制位運算的方式生成一個 64 bit 的 long 型 id,64 個 bit 中的第一個 bit 是無意義的。

接著 41 個 bit,就可以用當前時間戳(單位到毫秒),然後接著 5 個 bit 設定上這個機房 id,還有 5 個 bit 設定上機器 id。

最後再判斷一下,當前這臺機房的這臺機器上這一毫秒內,這是第幾個請求,給這次生成 id 的請求累加一個序號,作為最後的 12 個 bit。

最終一個 64 個 bit 的 id 就出來了,類似於:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000

***********

這個演算法可以保證說,一個機房的一臺機器上,在同一毫秒內,生成了一個唯一的 id。可能一個毫秒內會生成多個 id,但是有最後 12 個 bit 的序號來區分開來。
下面我們簡單看看這個 SnowFlake 演算法的一個程式碼實現,這就是個示例,大家如果理解了這個意思之後,以後可以自己嘗試改造這個演算法。
總之就是用一個 64 bit 的數字中各個 bit 位來設定不同的標誌位,區分每一個 id

SnowFlake JAVA演算法的實現程式碼如下:

public class IdWorker{

    //下面兩個每個5位,加起來就是10位的工作機器id
    private long workerId;    //工作id
    private long datacenterId;   //資料id
    //12位的序列號
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence){
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    //初始時間戳
    private long twepoch = 1288834974657L;

    //長度為5位
    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    //最大值
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    //序列號id長度
    private long sequenceBits = 12L;
    //序列號最大值
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    
    //工作id需要左移的位數,12位
    private long workerIdShift = sequenceBits;
   //資料id需要左移位數 12+5=17位
    private long datacenterIdShift = sequenceBits + workerIdBits;
    //時間戳需要左移位數 12+5+5=22位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
    //上次時間戳,初始值為負數
    private long lastTimestamp = -1L;

    public long getWorkerId(){
        return workerId;
    }

    public long getDatacenterId(){
        return datacenterId;
    }

    public long getTimestamp(){
        return System.currentTimeMillis();
    }

     //下一個ID生成演算法
    public synchronized long nextId() {
        long timestamp = timeGen();

        //獲取當前時間戳如果小於上次時間戳,則表示時間戳獲取出現異常
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        //獲取當前時間戳如果等於上次時間戳(同一毫秒內),則在序列號加一;否則序列號賦值為0,從0開始。
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        
        //將上次時間戳值重新整理
        lastTimestamp = timestamp;

        /**
          * 返回結果:
          * (timestamp - twepoch) << timestampLeftShift) 表示將時間戳減去初始時間戳,再左移相應位數
          * (datacenterId << datacenterIdShift) 表示將資料id左移相應位數
          * (workerId << workerIdShift) 表示將工作id左移相應位數
          * | 是按位或運算子,例如:x | y,只有當x,y都為0的時候結果才為0,其它情況結果都為1。
          * 因為個部分只有相應位上的值有意義,其它位上都是0,所以將各部分的值進行 | 運算就能得到最終拼接好的id
        */
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    //獲取時間戳,並與上次時間戳比較
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    //獲取系統時間戳
    private long timeGen(){
        return System.currentTimeMillis();
    }

    //---------------Test---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1,1,1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

SnowFlake演算法的優點:
(1)高效能高可用:生成時不依賴於資料庫,完全在記憶體中生成。
(2)容量大:每秒中能生成數百萬的自增ID。
(3)ID自增:存入資料庫中,索引效率高。


SnowFlake演算法的缺點:
依賴與系統時間的一致性,如果系統時間被回撥,或者改變,可能會造成id衝突或者重複。
實際中我們的機房並沒有那麼多,我們可以改進改演算法,將10bit的機器id優化,成業務表或者和我們系統相關的業務。