pycharts-從0開始美化一個圖表
目標效果
這個是Echarts
官方的視覺化作品, 點我跳轉,今天我們就嘗試下通過pyecharts
能否實現一樣的效果~
資料來源
每項資料包含5個值,分別代表人均GDP,人均壽命,GDP總量,國家,年份~
# 1990 & 2015年各國GDP&壽命 data = [[[28604, 77, 17096869, 'Australia', 1990], [31163, 77.4, 27662440, 'Canada', 1990], [1516, 68, 1154605773, 'China', 1990], [13670, 74.7, 10582082, 'Cuba', 1990], [28599, 75, 4986705, 'Finland', 1990], [29476, 77.1, 56943299, 'France', 1990], [31476, 75.4, 78958237, 'Germany', 1990], [28666, 78.1, 254830, 'Iceland', 1990], [1777, 57.7, 870601776, 'India', 1990], [29550, 79.1, 122249285, 'Japan', 1990], [2076, 67.9, 20194354, 'North Korea', 1990], [12087, 72, 42972254, 'South Korea', 1990], [24021, 75.4, 3397534, 'New Zealand', 1990], [43296, 76.8, 4240375, 'Norway', 1990], [10088, 70.8, 38195258, 'Poland', 1990], [19349, 69.6, 147568552, 'Russia', 1990], [10670, 67.3, 53994605, 'Turkey', 1990], [26424, 75.7, 57110117, 'United Kingdom', 1990], [37062, 75.4, 252847810, 'United States', 1990]], [[44056, 81.8, 23968973, 'Australia', 2015], [43294, 81.7, 35939927, 'Canada', 2015], [13334, 76.9, 1376048943, 'China', 2015], [21291, 78.5, 11389562, 'Cuba', 2015], [38923, 80.8, 5503457, 'Finland', 2015], [37599, 81.9, 64395345, 'France', 2015], [44053, 81.1, 80688545, 'Germany', 2015], [42182, 82.8, 329425, 'Iceland', 2015], [5903, 66.8, 1311050527, 'India', 2015], [36162, 83.5, 126573481, 'Japan', 2015], [1390, 71.4, 25155317, 'North Korea', 2015], [34644, 80.7, 50293439, 'South Korea', 2015], [34186, 80.6, 4528526, 'New Zealand', 2015], [64304, 81.6, 5210967, 'Norway', 2015], [24787, 77.3, 38611794, 'Poland', 2015], [23038, 73.13, 143456918, 'Russia', 2015], [19360, 76.5, 78665830, 'Turkey', 2015], [38225, 81.4, 64715810, 'United Kingdom', 2015], [53354, 79.1, 321773631, 'United States', 2015]]]
畫一個散點圖
先畫一個散點圖來展示1990年的資料~
為什麼不一起新增1990年和2015年的資料呢?
因為在直角座標系資料中,你必須公用一個x軸的資料才能一起新增
這兩個年份的x軸資料(人均GDP)顯然是不一樣的,所以只能分別繪製之後然後通過overlap
層疊在一起~
scatter = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1]] for i in data[0]]) ) scatter.render_notebook()
座標軸配置
上一步後資料貌似沒有展示出來,不要著急,接著往下做
設定座標軸型別為
value
;順便設定一個座標軸名稱~
scatter = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]]) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value")) ) scatter.render_notebook()
提示框配置
這部分與原效果不一樣,Echarts
中只顯示了國家名稱,我這邊會通過js形式將資料全部顯示到提示框中~
將滑鼠移到圖形上,我們便能看到各項資料值了~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" scatter = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]]) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter.render_notebook()
資料項標籤配置
散點多的時候標籤會很亂,這一步關閉標籤顯示~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" scatter = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], # 關閉標籤顯示 label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter.render_notebook()
圖形顏色配置
按照Echarts
中顏色的配置,設定徑向漸變配色~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" # 配色方案直接從Echarts投過來就好 item_color_js = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" scatter = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[3], i[2]] for i in data[0]], label_opts=opts.LabelOpts(is_show=False), # 設定圖形顏色 itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js))) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter.render_notebook()
畫另一個散點圖
畫另一個散點圖展示2015年的資料,除了圖形顏色不一樣,其他配置均與上一個散點圖一致~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" scatter = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[3], i[2]] for i in data[1]], label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js))) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter.render_notebook()
多圖層疊
將上面畫好的兩個圖層疊在一起,是不是有點模樣了~
因為兩個圖是共用全域性配置的,所以只需要保留一個圖的全域性配置項就可以了~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" scatter1 = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[3], i[2]] for i in data[0]], label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_1))) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value"), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[3], i[2]] for i in data[1]], label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2))) ) scatter1.overlap(scatter2) scatter1.render_notebook()
設定Y軸起始點
預設座標軸起始都是0,但這樣會讓所有的圖形都擠到一塊了不好區分,所以這邊將Y軸的起始位置修改一下~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" scatter1 = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color0='rgba(25, 100, 150, 0.5)', color=JsCode(item_color_js_1))) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", # 預設為False,即起始為0 is_scale=True), xaxis_opts=opts.AxisOpts( name='人均GDP', type_="value"), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2))) ) scatter1.overlap(scatter2) scatter1.render_notebook()
圖形大小配置
到這一步其實我們一直沒有用到GDP總量資料,這一步將GDP總量的資料對映到圖形大小;
這裡需要注意一下,正常情況下我們通過視覺元件去配置就完全OK的,但這裡為了與原始效果一樣,咱們採取通過執行JS
函式來設定圖形大小~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" # 這個函式會根據GDP總量的資料計算一個數值,用於配置圖形大小 symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" scatter1 = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], # 這裡配置圖形大小,根據GDP總量計算出symbol_size symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color0='rgba(25, 100, 150, 0.5)', color=JsCode(item_color_js_1))) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True), xaxis_opts=opts.AxisOpts( name='人均GDP', type_="value"), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], # 這裡配置圖形大小,根據GDP總量計算出symbol_size symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2))) ) scatter1.overlap(scatter2) scatter1.render_notebook()
圖形陰影效果
在pyecharts中ItemStyleOpts
其實是沒包含陰陽引數配置的,不過對於Pyecharts中的引數其實都支援直接傳入如下字典形式來配置的。
item_style = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) }
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" # 圖元樣式配置,通過字典傳入,包含陰影的設定 item_style_1 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) } # 圖元樣式配置,通過字典傳入 item_style_2 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_2) } scatter1 = (Scatter() .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), # 這裡傳入 itemstyle_opts=item_style_1) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True), xaxis_opts=opts.AxisOpts( name='人均GDP', type_="value"), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), # 這裡傳入 itemstyle_opts=item_style_2) ) scatter1.overlap(scatter2) scatter1.render_notebook()
圖形背景顏色配置
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" item_style_1 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) } item_style_2 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_2) } # 直接偷echarts的配色方案 bg_color_js = """ new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{ offset: 0, color: '#f7f8fa' }, { offset: 1, color: '#cdd0d5' }])""" scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js))) .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_1) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True), xaxis_opts=opts.AxisOpts( name='人均GDP', type_="value"), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_2) ) scatter1.overlap(scatter2) scatter1.render_notebook()
圖形長/寬設定
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" item_style_1 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) } item_style_2 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_2) } bg_color_js = """ new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{ offset: 0, color: '#f7f8fa' }, { offset: 1, color: '#cdd0d5' }])""" scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js), # 長寬設定 width='1000px', height='800px')) .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_1) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)), legend_opts=opts.LegendOpts(is_show=True, pos_right=10)) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_2) ) scatter1.overlap(scatter2) scatter1.render_notebook()
新增分割線
這裡注意線性配置裡設定為dashed
~
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" item_style_1 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) } item_style_2 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_2) } bg_color_js = """ new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{ offset: 0, color: '#f7f8fa' }, { offset: 1, color: '#cdd0d5' }])""" scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js),width='1000px', height='800px')) .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_1) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value", splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js))) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_2) ) scatter1.overlap(scatter2) scatter1.render_notebook()
新增標題,完工!
新增標題,順便將圖例位置調到右邊,完工!!!
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' +'人均GDP: '+param.data[0]+' 美元<br/>' +'GDP總量: '+param.data[2]+' 美元<br/>' +'人均壽命: '+param.data[1]+'歲';}""" item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(251, 118, 123)' }, { offset: 1, color: 'rgb(204, 46, 72)' }])""" item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{ offset: 0, color: 'rgb(129, 227, 238)' }, { offset: 1, color: 'rgb(25, 183, 207)' }])""" symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}""" item_style_1 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_1) } item_style_2 = { 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, 'color': JsCode(item_color_js_2) } bg_color_js = """ new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{ offset: 0, color: '#f7f8fa' }, { offset: 1, color: '#cdd0d5' }])""" scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js),width='1000px', height='800px')) .add_xaxis([i[0] for i in data[0]]) .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_1) .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均壽命', type_="value", is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))), xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value", splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))), tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)), legend_opts=opts.LegendOpts(is_show=True, pos_right=10), title_opts=opts.TitleOpts(title="1990 與 2015 年各國家人均壽命與 GDP")) ) scatter2 = (Scatter() .add_xaxis([i[0] for i in data[1]]) .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]], symbol_size=JsCode(symbol_js), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=item_style_2) ) scatter1.overlap(scatter2) scatter1.render_notebook()天道酬勤 循序漸進 技壓群雄