1. 程式人生 > 其它 >FlinkSQL實踐記錄4 -- 實時更新的維表如何join

FlinkSQL實踐記錄4 -- 實時更新的維表如何join

1. 背景

對於不定期更新的維表,以什麼元件來處理作為FlinkSQL的source表?HBase?Kafka?或mysql?哪一種方案能得到正確結果?
且需要考慮到事實表和維表關聯的時候,是否需要和維錶的歷史版本關聯?還是隻關聯維表的最新版本?
下文以只關聯維表的最新版本為目標進行測試。

2. 實踐過程

2.1 將kafka的compacted topic作為維表

(1) kafka普通主題修改為compacted topic

bin/kafka-topics.sh --alter --topic my_topic_name --zookeeper my_zookeeper:2181 --config cleanup.policy=compact

(2) kafka生產者程式碼

        // 建立訊息
        DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.nnnnnnnnn");
        for (int i = 2; i < 8; i++) {
            JSONObject json1 = new JSONObject();
            json1.put("key", i+"");
            //json.put("update_time", dtf.format(LocalDateTime.now()));
            JSONObject json = new JSONObject();
            json.put("id", i+"");
            json.put("name", "name444"+i);
            ProducerRecord<String, String> record = new ProducerRecord<String, String>(
                    "flinksqldim",
                    json1.toJSONString(),
                    json.toJSONString()
            );
         }

(3) FlinkSQL主體程式碼

        // 建立執行環境
        //EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();

        TableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

        // 把kafka中的topic對映成一個輸入臨時表
        tableEnv.executeSql(
                "CREATE TABLE sensor_source(" +
                        " id STRING, " +
                        " name STRING, " +
                        " o_time TIMESTAMP(3), " +
                        " WATERMARK FOR o_time AS o_time " +
                        " ) WITH (" +
                        " 'connector' = 'kafka'," +
                        " 'topic' = 'flinksqldemo'," +
                        " 'properties.bootstrap.servers' = 'ip:port'," +
                        " 'properties.group.id' = 'flinksqlCount'," +
                        " 'scan.startup.mode' = 'earliest-offset'," +
                        " 'format' = 'json')"
        );
        // 把kafka中資料 對映成輸入維表 - 實時變更的維表
        tableEnv.executeSql(
                "CREATE TABLE dim_source (" +
                        "               id STRING," +
                        "               name STRING," +
                        "               update_time TIMESTAMP(3) METADATA FROM 'timestamp' VIRTUAL, " +
                        "               WATERMARK FOR update_time AS update_time, " +
                        "               PRIMARY KEY (id) NOT ENFORCED" +
                        ") WITH (" +
                        " 'connector' = 'upsert-kafka'," +
                        " 'topic' = 'flinksqldim'," +
                        " 'properties.bootstrap.servers' = 'ip:port'," +
                        " 'properties.group.id' = 'flinksqlDim'," +
                        " 'key.format' = 'json'," +
                        " 'value.format' = 'json')"
        );

        // 把Mysql中的表對映為一個輸出臨時表
        String mysql_sql = "CREATE TABLE mysql_sink (" +
                "               name STRING," +
                "               cnt BIGINT," +
                "               PRIMARY KEY (name) NOT ENFORCED" +
                ") WITH (" +
                " 'connector' = 'jdbc'," +
                " 'url' = 'jdbc:mysql://ip:port/kafka?serverTimezone=UTC'," +
                " 'table-name' = 'count_info'," +
                " 'username' = 'xxx'," +
                " 'password' = 'xxx'" +
                ")";

       tableEnv.executeSql(mysql_sql);

        // 插入資料
        TableResult tableResult = tableEnv.executeSql(
                "INSERT INTO mysql_sink " +
                        "SELECT b.name, count(*) as cnt " +
                        "FROM sensor_source as a " +
                        "INNER JOIN dim_source as b " +
                        "on a.id = b.id " +
                        "where a.id > 3 " +
                        "group by b.name "
                       // "order by name "
        );
        System.out.println(tableResult.getJobClient().get().getJobStatus());

3. 試錯

3.1 使用Regular Joins 常規join

kafka生產者程式碼

        for (int i = 1; i < 10; i++) {
            //json.put("update_time", dtf.format(LocalDateTime.now()));
            JSONObject json = new JSONObject();
            json.put("id", i+"");
            json.put("name", "name555"+i);
            ProducerRecord<Integer, String> record = new ProducerRecord<Integer, String>(
                    "flinksqldim2",
                    i,
                    json.toJSONString()
            );
            // 傳送訊息
            Future<RecordMetadata> future = producer.send(record);

FlinkSQL處理程式碼

        // 建立執行環境
        //EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();

        TableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

        // 把kafka中的topic對映成一個輸入臨時表
        tableEnv.executeSql(
                "CREATE TABLE sensor_source(" +
                        "id STRING, " +
                        "name STRING, " +
                        "o_time TIMESTAMP(3), " +
                        " WATERMARK FOR o_time AS o_time " +
                        ") WITH  (" +
                        " 'connector' = 'kafka'," +
                        " 'topic' = 'flinksqldemo'," +
                        " 'properties.bootstrap.servers' = 'ip:port'," +
                        " 'properties.group.id' = 'flinksqlCount'," +
                        " 'scan.startup.mode' = 'earliest-offset'," +
                        " 'format' = 'json')"
        );
        // 把kafka中資料 對映成輸入維表 - 實時變更的維表, 非compacted topic
        tableEnv.executeSql(
                "CREATE TABLE dim_source ( " +
                        "               id STRING, " +
                        "               name STRING, " +
                        "               update_time TIMESTAMP(3) METADATA FROM 'timestamp' VIRTUAL, " +
                        "               WATERMARK FOR update_time AS update_time " +
                        ") WITH (" +
                        " 'connector' = 'kafka'," +
                        " 'topic' = 'flinksqldim2'," +
                        " 'properties.bootstrap.servers' = 'ip:port'," +
                        " 'properties.group.id' = 'flinksqlDim'," +
                        " 'scan.startup.mode' = 'earliest-offset'," +
                        " 'format' = 'json')"
        );


        // 把Mysql中的表對映為一個輸出臨時表
        String mysql_sql = "CREATE TABLE mysql_sink (" +
                "               name STRING," +
                "               cnt BIGINT," +
                "               PRIMARY KEY (name) NOT ENFORCED" +
                ") WITH (" +
                " 'connector' = 'jdbc'," +
                " 'url' = 'jdbc:mysql://ip:port/kafka?serverTimezone=UTC'," +
                " 'table-name' = 'count_info'," +
                " 'username' = 'xxx'," +
                " 'password' = 'xxx'" +
                ")";

        tableEnv.executeSql(mysql_sql);

        // 插入資料
        TableResult tableResult = tableEnv.executeSql(
                "INSERT INTO mysql_sink " +
                        "SELECT b.name, count(*) as cnt " +
                        "FROM sensor_source a " +
                        "JOIN dim_source b " +
                        "on a.id = b.id " +
                        "where a.id > 3 " +
                        "group by b.name "
        );
        System.out.println(tableResult.getJobClient().get().getJobStatus());

維表流更新了幾次資料後,結果表count_info中資料錯亂