face_recognition安裝及各種應用
阿新 • • 發佈:2022-01-28
1.安裝
首先,必須提前安裝cmake、numpy、dlib,其中,由於博主所用的python版本是3.6.4(為了防止不相容,所以用之前的版本),只能安裝19.7.0及之前版本的dlib,所以直接pip install dlib會報錯,需要pip install dlib==19.7.0
安裝完預備庫之後就可以直接pip install face_recognition
2.應用
(1)提取人臉
import face_recognition from PIL import Image image = face_recognition.load_image_file("1.jpg") face_locations= face_recognition.face_locations(image) # top, right, bottom, left #以下展示提取的人臉 for face_location in face_locations: # Print the location of each face in this image top, right, bottom, left = face_location # You can access the actual face itself like this: face_image = image[top:bottom, left:right] pil_image= Image.fromarray(face_image) pil_image.show()
(2)查詢面部特徵輪廓線
import face_recognition from PIL import Image,ImageDraw image = face_recognition.load_image_file("1.jpg") face_landmarks_list = face_recognition.face_landmarks(image) #以下為展示輪廓線 pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image)for face_landmarks in face_landmarks_list: facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip' ] for facial_feature in facial_features: d.line(face_landmarks[facial_feature], width=5) del d pil_image.show()
(3)比較人臉
import face_recognition known_image = face_recognition.load_image_file("known_person.jpg") unknown_image = face_recognition.load_image_file("unknown.jpg") biden_encoding = face_recognition.face_encodings(known_image)[0] unknown_encoding = face_recognition.face_encodings(unknown_image)[0] results = face_recognition.compare_faces([biden_encoding], unknown_encoding)
(4)辨別人臉
#可以設定多張已知人臉
import face_recognition import cv2,time # 人物名稱的集合 known_face_names = ["first","second"] face_locations = [] face_encodings = [] demo_names = [] process_this_demo = True # 本地影象一 first_image = face_recognition.load_image_file("first_person.jpg") first_encoding = face_recognition.face_encodings(first_image)[0] # 本地影象二 second_image = face_recognition.load_image_file("second_person.jpg") second_encoding = face_recognition.face_encodings(second_image)[0] known_face_encodings = [first_encoding,second_encoding] # demo path = "unknown.jpg" demo = cv2.imread(path) demo_image = face_recognition.load_image_file(path) demo_encodings = face_recognition.face_encodings(demo_image) small_demo = cv2.resize(demo, (0, 0), fx=0.25, fy=0.25) rgb_small_demo = small_demo[:, :, ::-1] demo_face_locations = face_recognition.face_locations(rgb_small_demo) for demo_encoding in demo_encodings: # 預設為unknown matches = face_recognition.compare_faces(known_face_encodings, demo_encoding) name = "unknown" if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] demo_names.append(name) # 將捕捉到的人臉顯示出來 for (top, right, bottom, left), name in zip(demo_face_locations, demo_names): # Scale back up face locations since the demo we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # 矩形框 cv2.rectangle(demo, (left, top), (right, bottom), (0, 0, 255), 2) #加上標籤 cv2.rectangle(demo, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(demo, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display cv2.imshow('face_recognition', demo) cv2.waitKey(0) cv2.destroyAllWindows()
(5)攝像頭實時辨別人臉
import face_recognition import cv2,time video_capture = cv2.VideoCapture(0) # 本地影象一 first_image = face_recognition.load_image_file("1.jpg") first_face_encoding = face_recognition.face_encodings(first_image)[0] # 本地影象二 second_image = face_recognition.load_image_file("3.jpg") second_face_encoding = face_recognition.face_encodings(second_image)[0] # 本地圖片三 third_image = face_recognition.load_image_file("5.jpg") third_face_encoding = face_recognition.face_encodings(third_image)[0] # Create arrays of known face encodings and their names # 臉部特徵資料的集合 known_face_encodings = [ first_face_encoding, second_face_encoding, third_face_encoding ] # 人物名稱的集合 known_face_names = [ "first", "second", "third" ] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # 讀取攝像頭畫面 ret, frame = video_capture.read() # 改變攝像頭影象的大小,影象小,所做的計算就少 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # opencv的影象是BGR格式的,而我們需要是的RGB格式的,因此需要進行一個轉換。 rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # 根據encoding來判斷是不是同一個人,是就輸出true,不是為flase face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # 預設為unknown matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame # 將捕捉到的人臉顯示出來 for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # 矩形框 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) #加上標籤 cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display cv2.imshow('monitor', frame) # 按Q退出 if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()