1. 程式人生 > 其它 >6.2.4 平面向量的數量積

6.2.4 平面向量的數量積

必修二同步拔高,難度3顆星!

\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)
【高分突破系列】2021-2022學年高一數學下學期同步知識點剖析精品講義
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)

必修二同步拔高,難度3顆星!

模組導圖

知識剖析

概念

如果兩個非零向量\(\vec{a}\)\(\vec{b}\),它們的夾角為\(\theta\),我們把數量\(|\vec{a}||\vec{b}| \cosθ\)叫做與的數量積(或內積),記作:\(\vec{a} \cdot \vec{b}\)

,即\(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\).規定:零向量與任一向量的數量積是\(0\).
\({\color{Red}{ PS }}\)數量積是一個實數,不再是一個向量.

投影

向量\(\vec{b}\)在向量\(\vec{a}\)上的投影:\(|\vec{b}| \cos \theta\),它是一個實數,但不一定大於\(0\).

運演算法則

對於向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\),和實數,有
(1) \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\)


(2) \((\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=\vec{a} \cdot(\lambda \vec{b})\)
(3) \((\vec{a}+\vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}\)
但是\((\vec{a} \cdot \vec{b}) \vec{c}=\vec{a}(\vec{b} \cdot \vec{c})\)不一定成立.
(當向量\(\vec{a}, \vec{c}\)不共線時,向量\(\vec{a}(\vec{b} \cdot \vec{c})\)
與向量\((\vec{a} \cdot \vec{b}) \vec{c}\)肯定不共線,那怎麼可能相等呢)
即向量的數量積滿足交換律,分配率,但不滿足結合律.

經典例題

【題型一】求數量積

【典題1】已知向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}+\vec{b}|=|\vec{b}|\),且\(|\vec{a}|=2\),則\(\vec{a} \cdot \vec{b}=\)\(\underline{\quad \quad}\)
【解析】因為\(|\vec{a}+\vec{b}|=|\vec{b}|\),即有\(|\vec{a}+\vec{b}|^{2}=|\vec{b}|^{2}\)
所以\(\vec{a}^{2}+2 \vec{a} \cdot \vec{b}+\vec{b}^{2}=\vec{b}^{2}\),則\(2 \vec{a} \cdot \vec{b}=-\vec{a}^{2}=-4\)
所以\(\vec{a} \cdot \vec{b}=-2\)
【點撥】①由數量積的定義可知\(|\vec{a}|^{2}=\vec{a}^{2}\)
②題目中遇到類似\(|\vec{a}+\vec{b}|\)可嘗試利用性質\(|\vec{a}|^{2}=\vec{a}^{2}\)達到去掉絕對值的目的.

【典題2】在三角形\(ABC\)中,若\(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\)\(AC=6\)\(AB=3\)\(E,F\)為邊\(BC\)的三等分點,則\(\overrightarrow{A E} \cdot \overrightarrow{A F}=\)\(\underline{\quad \quad}\)

【解析】\(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\)
\(\overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{B C}=\overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}-2 \overrightarrow{A B} \cdot \overrightarrow{B C}\)
即有\(\overrightarrow{A B} \cdot \overrightarrow{B C}=0\)
\(∵AC=6 ,AB=3\)\(∴BC^2=6^2-3^2=27\)
\(∵E ,F\)為邊\(BC\)的三等分點,
\(\overrightarrow{A E} \cdot \overrightarrow{A F}=(\overrightarrow{A B}+\overrightarrow{B E})(\overrightarrow{A B}+\overrightarrow{B F})=\left(\overrightarrow{A B}+\dfrac{1}{3} \overrightarrow{B C}\right)\left(\overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{B C}\right)\)
\({\color{Red}{(利用首尾相接法把向量向\overrightarrow{A B}、\overrightarrow{B C}靠攏 }})\)
\(=\dfrac{2}{9} \overrightarrow{B C}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{A B} \cdot \overrightarrow{B C}=\dfrac{2}{9} \times 27+3^{2}+0=15\)
【點撥】
①已知條件\(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\)利用性質\(|\vec{a}|^{2}=\vec{a}^{2}\)可得到\(\overrightarrow{A B} \cdot \overrightarrow{B C}=0\),其實也可以通過平行四邊形法則和三角形法則得到的;
②求數量積\(\overrightarrow{A E} \cdot \overrightarrow{A F}\),第一個想法用數量積公式\(\overrightarrow{A E} \cdot \overrightarrow{A F}=|\overrightarrow{A E}| \cdot|\overrightarrow{A F}| \cos \angle E A F\),但是發現題目已知條件中很難求解\(|\overrightarrow{A E}|\)\(|\overrightarrow{A F}|\)\(\cos \angle E A F\).又因為\(\overrightarrow{A B} \cdot \overrightarrow{B C}=0\),又知道\(AB、BC\)的長度,故想到\(\overrightarrow{A E} \cdot \overrightarrow{A F}\)把轉化為用\(\overrightarrow{A B}\)\(\overrightarrow{B C}\)表示.
③在求數量積的時候,直接用公式很難求解,都儘量向“資訊量大”的向量靠攏.

【題型二】求向量夾角

【典題1】已知向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}|=1\)\(|\vec{b}|=2\)\(|\vec{a}+2 \vec{b}|=\sqrt{21}\),那麼向量\(\vec{a}\)\(\vec{b}\)的夾角為\(\underline{\quad \quad}\)
【解析】\(\because|\vec{a}|=1\)\(|\vec{b}|=2\)\(|\vec{a}+2 \vec{b}|=\sqrt{21}\)
\(\therefore(\vec{a}+2 \vec{b})^{2}=\vec{a}^{2}+4 \vec{b}^{2}+4 \vec{a} \cdot \vec{b}=1+16+4 \vec{a} \cdot \vec{b}=21\)
\(\therefore \vec{a} \cdot \vec{b}=1\)
\(\therefore \cos <\vec{a}, \vec{b}>=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{1}{2}\),且\(0 \leq<\vec{a}, \vec{b}>\leq \pi\)
\(\therefore \vec{a}\)\(\vec{b}\)的夾角為\(\dfrac{\pi}{3}\)

【典題2】已知向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\),則向量\(\vec{a}\)\(\vec{b}\)的夾角的最大值為\(\underline{\quad \quad}\)
【解析】\(\because|\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\)
\(\therefore(\vec{a}-\vec{b}) \cdot(3 \vec{a}-\vec{b})=3 \vec{a}^{2}+\vec{b}^{2}-4 \vec{a} \cdot \vec{b}=3+\vec{b}^{2}-4 \vec{a} \cdot \vec{b}=0\)
\(\therefore \vec{a} \cdot \vec{b}=\dfrac{|\vec{b}|^{2}+3}{4}\)
\(\therefore \cos <\vec{a}, \vec{b}>=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{|\vec{b}|^{2}+3}{4|\vec{b}|}=\dfrac{|\vec{b}|+\dfrac{3}{|\vec{b}|}}{4} \geq \dfrac{\sqrt{3}}{2}\),且\(0^{\circ} \leq<\vec{a}, \vec{b}>\leq 180^{\circ}\)
\(\therefore \cos <\vec{a}, \vec{b}>=\dfrac{\sqrt{3}}{2}\)時,\(\vec{a}\)\(\vec{b}\)的夾角最大為\(30^{\circ}\)

【題型三】求數量積最值
【典題1】如圖,已知等腰梯形\(ABCD\)中,\(AB=2DC=4\)\(A D=B C=\sqrt{3}\)\(E\)\(DC\)的中點,\(F\)是線段\(BC\)上的動點,則\(\overrightarrow{E F} \cdot \overrightarrow{B F}\)的最小值是\(\underline{\quad \quad}\).

【解析】由等腰梯形的知識可知\(\cos B=\dfrac{\sqrt{3}}{3}\)
\(BF=x\),則\(C F=\sqrt{3}-x\)
\(\therefore \overrightarrow{E F} \cdot \overrightarrow{B F}=(\overrightarrow{E C}+\overrightarrow{C F}) \overrightarrow{B F}=\overrightarrow{E C} \cdot \overrightarrow{B F}+\overrightarrow{C F} \cdot \overrightarrow{B F}\)
\(=1 \cdot x\left(-\dfrac{\sqrt{3}}{3}\right)+(\sqrt{3}-x) \cdot x \cdot(-1)=x^{2}-\dfrac{4}{3} \sqrt{3} x\)
\(\because 0 \leq x \leq \sqrt{3}\)
\(∴\)\(x=\dfrac{2}{3} \sqrt{3}\)時,\(\overrightarrow{E F} \cdot \overrightarrow{B F}\)取得最小值,最小值為\(\left(\dfrac{2}{3} \sqrt{3}\right)^{2}-\dfrac{2}{3} \sqrt{3} \times \dfrac{4}{3} \sqrt{3}=-\dfrac{4}{3}\)

【典題2】如圖,已知矩形\(ABCD\)的邊長\(AB=2\)\(AD=1\).點\(P ,Q\)分別在邊\(BC ,CD\)上,且\(\angle P A Q=45^{\circ}\),則\(\overrightarrow{A P} \cdot \overrightarrow{A Q}\)的最小值為\(\underline{\quad \quad}\)

【解析】\(\angle P A B=\theta\),則\(\angle D A Q=45^{\circ}-\theta\)
\(\overrightarrow{A P} \cdot \overrightarrow{A Q}=|\overrightarrow{A P}||\overrightarrow{A Q}| \cos 45^{\circ}=\dfrac{2}{\cos \theta} \cdot \dfrac{1}{\cos \left(45^{\circ}-\theta\right)} \cdot \dfrac{\sqrt{2}}{2}\)\(=\dfrac{2}{\cos \theta \cdot\left(\dfrac{\sqrt{2}}{2} \cos \theta+\dfrac{\sqrt{2}}{2} \sin \theta\right)}\)\(=\dfrac{2}{\cos ^{2} \theta+\cos \theta \sin \theta}=\dfrac{2}{\dfrac{1+\cos 2 \theta}{2}+\dfrac{\sin 2 \theta}{2}}\)
\(=\dfrac{2}{\dfrac{\sqrt{2}}{2} \sin \left(2 \theta+45^{\circ}\right)+\dfrac{1}{2}} \geq \dfrac{2}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=4 \sqrt{2}-4\)
當且僅當\(2 \theta+45^{\circ}=90^{\circ}\)
\(\therefore \theta=22.5^{\circ}\)時取\(“=”\),當\(\theta=22.5^{\circ}\)時,點\(P\)恰在邊\(BC\)上,\(Q\)恰邊\(CD\)上,滿足條件,
綜上所述,\(\overrightarrow{A P} \cdot \overrightarrow{A Q}\)的最小值為\(4 \sqrt{2}-4\)
故答案為:\(4 \sqrt{2}-4\)

【典題3】已知向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)滿足\(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\)\(|\vec{c}|=2 \sqrt{3}\)\(\vec{c}\)\(\vec{a}-\vec{b}\)所成的角為\(120°\),則當\(t \in \boldsymbol{R}\)時,\(|t \vec{a}+(1-t) \vec{b}|\)的最小值是\(\underline{\quad \quad}\)
【解析】

\(\because \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\)\(\therefore \vec{c}=-(\vec{a}+\vec{b})\)
\(\vec{c}\)\(\vec{a}-\vec{b}\)所成的角為\(120°\)\(\therefore \angle O E A=120^{\circ}\)
\({\color{Red}{ (此時由平行四邊形法則和三角形法則構造出一個平行四邊形)}}\)
\(\therefore \angle O E B=60^{\circ}\)\(|\vec{c}|=2 \sqrt{3}\)
\(\therefore O D=2 \sqrt{3}\)\(O E=\sqrt{3}\)
\(|t \vec{a}+(1-t) \vec{b}|=|\vec{b}+t(\vec{a}-\vec{b})|=|\overrightarrow{O B}+t \overrightarrow{B A}|\)
\(\because \overrightarrow{B P}\)\(\overrightarrow{B A}\)共線,\(\overrightarrow{B A} \neq \overrightarrow{0}\),設\(\overrightarrow{B P}=t \overrightarrow{B A}\)
\(|t \vec{a}+(1-t) \vec{b}|=|\overrightarrow{O P}|\)(\(P\)是直線\(BA\)上的動點),
\({\color{Red}{ (其實由性質“若\overrightarrow{O C}=x \overrightarrow{O A}+y \overrightarrow{O B},x+y=1,則點C在直線AB上”很容易知道:直線BA上的存在一動點P使得\overrightarrow{O P}=t \vec{a}+(1-t) \vec{b}) }}\)
所以當\(OP\)垂直於\(AB\)時,\(|t \vec{a}+(1-t) \vec{b}|=|\overrightarrow{O P}|\)最小,為\(O E \times \sin 60^{\circ}=\sqrt{3} \times \dfrac{\sqrt{3}}{2}=\dfrac{3}{2}\).
【點撥】①題中遇到類似\(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\)的等式,很容易想到移項,再利用平行四邊形法則進行構造圖形求解;
②本題中求\(|t \vec{a}+(1-t) \vec{b}|\)的最小值,那我們根據平行四邊形法則找到向量\(t \vec{a}+(1-t) \vec{b}\),確定出\(|t \vec{a}+(1-t) \vec{b}|\)的幾何意義從而求解成功.

鞏固練習

1(★) 已知向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}+\vec{b}|=|\vec{b}|\),且\(|\vec{a}|=2\),則\(\vec{a} \cdot \vec{b}=\)\(\underline{\quad \quad}\) .

2(★★) 已知非零向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}|=\dfrac{3}{4}|\vec{b}|\)\(\cos <\vec{a}, \vec{b}>=\dfrac{1}{3}\),若\((m \vec{a}+4 \vec{b}) \perp \vec{b}\),則實數\(m\)的值為\(\underline{\quad \quad}\).

3(★★) 已知向量\(\vec{a}\)\(\vec{b}\)滿足\(|\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\),則\(\vec{a}\)\(\vec{b}\)的夾角的最大值為\(\underline{\quad \quad}\) .

4(★★) 如圖,在梯形\(ABCD\)中,\(AB∥CD\)\(AB=4\)\(AD=3\)\(CD=2\)\(\overrightarrow{A M}=2 \overrightarrow{M D}\)\(\overrightarrow{A C} \cdot \overrightarrow{B M}=-3\),則\(\overrightarrow{A B} \cdot \overrightarrow{A D}=\)\(\underline{\quad \quad}\) .

5(★★) 已知\(△ABC\)中,點\(M\)線上段\(AB\)上,\(\angle A C B=2 \angle B C M=60^{\circ}\),且\(\overrightarrow{C M}-\lambda \overrightarrow{C B}=\dfrac{2}{3} \overrightarrow{C A}\).若\(|\overrightarrow{C M}|=6\),則 \(\overrightarrow{C M} \cdot \overrightarrow{A B}=\)\(\underline{\quad \quad}\).

6(★★★) \(H\)\(△ABC\)的垂心,且\(3 \overrightarrow{H A}+4 \overrightarrow{H B}+5 \overrightarrow{H C}=\overrightarrow{0}\),則\(\cos \angle B H C\)的值為\(\underline{\quad \quad}\).

7(★★★) 已知\(P\)\(△ABC\)所在平面內的一點,\(\overrightarrow{B P}=2 \overrightarrow{P C}\)\(|\overrightarrow{A P}|=4\),若點\(Q\)線上段\(AP\)上運動,則\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})\)的最小值為\(\underline{\quad \quad}\) .

8(★★★) 已知非零向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)滿足:\((\vec{a}-2 \vec{c})(\vec{b}-2 \vec{c})=0\)且不等式\(|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}| \geq \lambda|\vec{c}|\)恆立,則實數\(\lambda\)的最大值為\(\underline{\quad \quad}\) .

9(★★★) 已知平面向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\),對任意實數\(x ,y\)都有\(|\vec{a}-x \vec{b}| \geq|\vec{a}-\vec{b}|\)\(|\vec{a}-y \vec{c}| \geq|\vec{a}-\vec{c}|\)成立.若\(|\vec{a}|=2\),則\(\vec{b}(\vec{c}-\vec{a})\)的最大值是\(\underline{\quad \quad}\) .

10(★★★) 設為兩個非零向量\(\vec{a}\)\(\vec{b}\)的夾角,已知對任意實數\(t\)\(|\vec{b}-t \vec{a}|\)的最小值為\(1\),則( )
A.若\(\theta\)確定,則\(|\vec{a}|\)唯一確定
B.若\(\theta\)確定,則\(|\vec{b}|\)唯一確定
C.若\(|\vec{a}|\)確定,則\(\theta\)唯一確定
D.若\(|\vec{b}|\)確定,則\(\theta\)唯一確定

答案

1【答案】\(-2\)
【解析】因為\(|\vec{a}+\vec{b}|=|\vec{b}|\),即有\(|\vec{a}+\vec{b}|^{2}=|\vec{b}|^{2}\)
所以\(\vec{a}^{2}+2 \vec{a} \cdot \vec{b}+\vec{b}^{2}=\vec{b}^{2}\),則\(2 \vec{a} \cdot \vec{b}=-\vec{a}^{2}=-4\)
所以\(\vec{a} \cdot \vec{b}=-2\).
2【答案】\(-16\)
【解析】∵已知非零向量\(\vec{a}\)\(\vec{b}\),滿足\(|\vec{a}|=\dfrac{3}{4}|\vec{b}|\)\(\cos <\vec{a}, \vec{b}>=\dfrac{1}{3}\)
\((m \vec{a}+4 \vec{b}) \perp \vec{b}\)
\(\therefore(m \vec{a}+4 \vec{b}) \cdot \vec{b}=m \vec{a} \cdot \vec{b}+4 \vec{b}^{2}=m \cdot \dfrac{3}{4}|\vec{b}| \cdot|\vec{b}| \cdot \dfrac{1}{3}+4|\vec{b}|^{2}=0\)
求得\(m=-16\).
3【答案】\(30°\)
【解析】\(\because |\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\)
\(\therefore(\vec{a}-\vec{b}) \cdot(3 \vec{a}-\vec{b})=3 \vec{a}^{2}+\vec{b}^{2}-4 \vec{a} \cdot \vec{b}=3+\vec{b}^{2}-4 \vec{a} \cdot \vec{b}=0\)
\(\therefore \vec{a} \cdot \vec{b}=\dfrac{|\vec{b}|^{2}+3}{4}\)
\(\therefore \cos <\vec{a}, \quad \vec{b}>=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{|\vec{b}|^{2}+3}{4|\vec{b}|}=\dfrac{|\vec{b}|+\dfrac{3}{|\vec{b}|}}{4} \geq \dfrac{\sqrt{3}}{2}\),且\(0^{\circ} \leq\langle\vec{a}, \vec{b}\rangle \leq 180^{\circ}\)
\(\therefore \cos <\vec{a}, \quad \vec{b}>=\dfrac{\sqrt{3}}{2}\)時,\(\vec{a}\)\(\vec{b}\)的夾角最大為\(30°\)
4【答案】\(\dfrac{3}{2}\)
【解析】\(∵\)在梯形\(ABCD\)中,\(AB∥CD\)\(AB=4\)\(AD=3\)\(CD=2\)\(\overrightarrow{A M}=2 \overrightarrow{M D}\)
\(\therefore \overrightarrow{A C} \cdot \overrightarrow{B M}=(\overrightarrow{A D}+\overrightarrow{D C}) \cdot(\overrightarrow{B A}+\overrightarrow{A M})=\left(\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(-\overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{A D}\right)\)\(=\dfrac{2}{3} \overrightarrow{A D}^{2}-\dfrac{1}{2} \overrightarrow{A B}^{2}-\dfrac{2}{3} \overrightarrow{A D} \cdot \overrightarrow{A B}=-3\)
\(\therefore \dfrac{2}{3} \times 3^{2}-\dfrac{1}{2} \times 4^{2}-\dfrac{2}{3} \overrightarrow{A B} \cdot \overrightarrow{A D}=-3\)
\(\overrightarrow{A B} \cdot \overrightarrow{A D}=\dfrac{3}{2}\).
5【答案】\(27\)
【解析】\(CM\)為對角線作平行四邊形\(CPMQ\)

\(∵CM\)平分\(∠ACB\)\(∴\)四邊形__\(XPMQ\)是菱形,
\(CM=6\)\(∠BCM=30°\)
\(\therefore C P=C Q=2 \sqrt{3}\)
\(\therefore \overrightarrow{C P} \cdot \overrightarrow{C Q}=2 \sqrt{3} \times 2 \sqrt{3} \times \cos 60^{\circ}=6\)
\(\because \overrightarrow{C M}-\lambda \overrightarrow{C B}=\dfrac{2}{3} \overrightarrow{C A}\)
\(\overrightarrow{C M}=\dfrac{2}{3} \overrightarrow{C A}+\lambda \overrightarrow{C B}\),且\(A,M,B\)三點共線,
\(\therefore \lambda=\dfrac{1}{3}\)
\(\overrightarrow{C M}=\overrightarrow{C P}+\overrightarrow{C Q}\)
\(\therefore \overrightarrow{C A}=\dfrac{3}{2} \overrightarrow{C Q}\)\(\overrightarrow{C B}=3 \overrightarrow{C P}\)
\(\therefore \overrightarrow{C M} \cdot \overrightarrow{A B}=(\overrightarrow{C P}+\overrightarrow{C Q}) \cdot\left(3 \overrightarrow{C P}-\dfrac{3}{2} \overrightarrow{C Q}\right)\)
\(=3 \overrightarrow{C P}^{2}-\dfrac{3}{2} \overrightarrow{C Q}^{2}+\dfrac{3}{2} \overrightarrow{C P} \cdot \overrightarrow{C Q}=3 \times 12-\dfrac{3}{2} \times 12+\dfrac{3}{2} \times 6=27\)
6【答案】\(-\dfrac{\sqrt{70}}{14}\)
【解析】由三角形垂心性質可得,\(\overrightarrow{H A} \cdot \overrightarrow{H B}=\overrightarrow{H B} \cdot \overrightarrow{H C}=\overrightarrow{H C} \cdot \overrightarrow{H A}\)
不妨設__\(\overrightarrow{H A} \cdot \overrightarrow{H B}=\overrightarrow{H B} \cdot \overrightarrow{H C}=\overrightarrow{H C} \cdot \overrightarrow{H A}=x\)
\(\because 3 \overrightarrow{H A}+4 \overrightarrow{H B}+5 \overrightarrow{H C}=\overrightarrow{0}\)
\(\therefore 3 \overrightarrow{H A} \cdot \overrightarrow{H B}+4 \overrightarrow{H B}^{2}+5 \overrightarrow{H C} \cdot \overrightarrow{H B}=0\)
\(\therefore|\overrightarrow{H B}|=\sqrt{-2 x}\),同理可求得\(|\overrightarrow{H C}|=\sqrt{-\dfrac{7 x}{5}}\)
\(\therefore \cos \angle B H C=\dfrac{\overrightarrow{H B} \cdot \overrightarrow{H C}}{|\overrightarrow{H B}||\overrightarrow{H C}|}=-\dfrac{\sqrt{70}}{14}\)
7【答案】\(-12\)
【解析】由題意,畫圖如下,

根據題意及圖,可知\(\overrightarrow{B P}=\overrightarrow{Q P}-\overrightarrow{Q B}\)\(\overrightarrow{P C}=\overrightarrow{Q C}-\overrightarrow{Q P}\)
\(\because \overrightarrow{B P}=2 \overrightarrow{P C}\)\(\therefore \overrightarrow{Q P}-\overrightarrow{Q B}=2(\overrightarrow{Q C}-\overrightarrow{Q P})\)
整理,得\(\overrightarrow{Q B}+2 \overrightarrow{Q C}=3 \overrightarrow{Q P}\)
\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})=\overrightarrow{Q A} \cdot 3 \overrightarrow{Q P}\)\(=-3|\overrightarrow{Q A}| \cdot|\overrightarrow{Q P}|=-3|\overrightarrow{Q A}| \cdot(4-|\overrightarrow{Q A}|)=3\left(|\overrightarrow{Q A}|^{2}-4|\overrightarrow{Q A}|\right)\)
\(|\overrightarrow{Q A}|=m\),很明顯\(m \in[0,4]\)
\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})=3\left(|\overrightarrow{Q A}|^{2}-4|\overrightarrow{Q A}|\right)\)\(=3\left(m^{2}-4 m\right)=3(m-2)^{2}-12\)
根據二次函式的性質,可知:
\(m=2\)時,\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})\)取得最小值為\(-12\)
8【答案】\(4\)
【解析】\(\because(\vec{a}-2 \vec{c}) \cdot(\vec{b}-2 \vec{c})=\dfrac{1}{4}\left[(\vec{a}-2 \vec{c}+\vec{b}-2 \vec{c})^{2}-(\vec{a}-2 \vec{c}-\vec{b}+2 \vec{c})^{2}\right]\)
\(=\dfrac{1}{4}\left[(\vec{a}+\vec{b}-4 \vec{c})^{2}-(\vec{a}-\vec{b})^{2}\right]=0\)
\(\therefore(\vec{a}+\vec{b}-4 \vec{c})^{2}=(\vec{a}-\vec{b})^{2}\)
\(\therefore|\vec{a}+\vec{b}-4 \vec{c}|=|\vec{a}-\vec{b}|\)
\(\therefore|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}|+|\vec{a}+\vec{b}-4 \vec{c}| \geq|(\vec{a}+\vec{b})-(\vec{a}+\vec{b}-4 \vec{c})|=4|\vec{c}|\)
\(|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}| \geq \lambda|\vec{c}|\)恆成立,
\(\therefore \lambda \leq 4\)
\(\therefore \lambda\)的最大值為\(4\)
9【答案】\(\dfrac{1}{2}\)
【解析】如圖,

\(\vec{a}=\overrightarrow{M A}\)\(\vec{b}=\overrightarrow{M B}\)\(\vec{c}=\overrightarrow{M C}\)
若對任意實數\(x,y\)都有\(|\vec{a}-x \vec{b}| \geq|\vec{a}-\vec{b}|\)\(|\vec{a}-y \vec{c}| \geq|\vec{a}-\vec{c}|\)成立,
\(B\)\(C\)在以\(MA\)為直徑的圓上,過\(O\)\(OD∥AC\),交\(MC\)\(E\),交圓於\(D\)\(\vec{b}=\overrightarrow{M B}\)在__\(OD\)上的射影最長為\(|E D|\)
\(\vec{b} \cdot(\vec{c}-\vec{a})=\vec{b} \cdot \overrightarrow{A C}=|D E| \cdot|A C|\)
\(\angle A M C=\theta\),則\(|A C|=2 \sin \theta\)\(|O E|=\sin \theta\)
\(|D E|=1-|O E|=1-\sin \theta\)
\(\therefore \vec{b} \cdot(\vec{c}-\vec{a})=2 \sin \theta(1-\sin \theta)=-2 \sin ^{2} \theta+2 \sin \theta\)
則當\(\sin \theta=\dfrac{1}{2}\)時,\(\vec{b} \cdot(\vec{c}-\vec{a})\)有最大值為\(\dfrac{1}{2}\)
10【答案】\(A\)
【解析】\(f(t)=|\vec{a}+t \vec{b}|^{2}=\vec{a}^{2}+2 t \cdot \vec{a} \cdot \vec{b}+t^{2} \cdot \vec{b}^{2}\)
\(\therefore \Delta=4(\vec{a} \cdot \vec{b})^{2}-4 \vec{a}^{2} \cdot \vec{b}^{2}=4 \vec{a}^{2} \cdot \vec{b}^{2}(\cos \theta-1) \leq 0\)恆成立,
當且僅當\(\mathrm{t}=-\dfrac{2 \vec{a} \cdot \vec{b}}{2 \times \vec{b}^{2}}=-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\)時,\(f(t)\)取得最小值\(2\)
\(\therefore\left(-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\right)^{2}+\vec{b}^{2}+2\left(-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\right) \cdot \vec{a} \cdot \vec{b}+\vec{a}^{2}=2,\)
化簡\(\vec{a}^{2} \sin ^{2} \theta=2\)
\(\therefore \theta\)確定,則\(|\vec{a}|\)唯一確定,故選\(A\).

作者:ZhaoGui,廣東湛江,微信mathszhg,歡迎交流

出處:貴哥講高中數學

宣告:本部落格版權歸[貴哥講高中數學]所有