1. 程式人生 > 其它 >ReentrantLock與AQS

ReentrantLock與AQS

類結構

ReentrantLock實現了Lock, java.io.Serializable這兩個介面,裡面有三個靜態內部類:Sync、NonfairSync和FairSync。其中Sync繼承了AbstractQueuedSynchronizer,也就是AQS。另外兩個內部類是對抽象類Sync的實現。

加鎖

在JDK8中,加鎖的流程和JDK11有些區別,JDK8參考美團的程式碼:

// java.util.concurrent.locks.ReentrantLock#NonfairSync

// 非公平鎖
static final class NonfairSync extends Sync {
	...
	final void lock() {
		if (compareAndSetState(0, 1))
			setExclusiveOwnerThread(Thread.currentThread());
		else
			acquire(1);
		}
  ...
}

// java.util.concurrent.locks.ReentrantLock#FairSync

static final class FairSync extends Sync {
  ...
	final void lock() {
		acquire(1);
	}
  ...
}

而在JDK11中,,不管是構建ReentrantLock時,指定的是公平鎖還是非公平鎖,加鎖後都會進入下面的流程:

public void lock() {
        sync.acquire(1);
    }


public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

其中,公平鎖和非公平鎖對tryAcquire()的實現有一些區別:

static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }


@ReservedStackAccess
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }




    /**
     * Sync object for fair locks
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;
        /**
         * Fair version of tryAcquire.  Don't grant access unless
         * recursive call or no waiters or is first.
         */
        @ReservedStackAccess
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

可以看出,無論是公平鎖還是非公平鎖,實現流程都是類似的,只是公平鎖需要通過hasQueuedPredecessors()判斷當前執行緒有沒有前驅節點,如果有的話就不去搶鎖,而是加入等待佇列後等待。

排隊

再看acquire():

public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

當前執行緒會通過addWaiter()方法變為等待佇列上的一個節點,然後這個節點會傳入acquireQueued()去執行相應的流程:

private Node addWaiter(Node mode) {
        Node node = new Node(mode);

        for (;;) {
            Node oldTail = tail;
            if (oldTail != null) {
                node.setPrevRelaxed(oldTail);
                if (compareAndSetTail(oldTail, node)) {
                    oldTail.next = node;
                    return node;
                }
            } else {
                initializeSyncQueue();
            }
        }
    }

首先新建一個節點,然後採用自旋(for迴圈)的方式將節點加入等待佇列之中。此時會先獲取一下佇列的尾節點,但是由於此時可能有多個執行緒在操作這個佇列,所以僅僅能把當前節點指向這個獲取的尾節點,只有通過CAS(compareAndSetTail)判斷並修改尾節點為當前節點後,才能將剛才的尾節點指向噹噹前節點,否則就一直自旋,直到成功將節點加入佇列。如果當前沒有尾節點,就要將佇列初始化。最終將當前節點返回:

final boolean acquireQueued(final Node node, int arg) {
        boolean interrupted = false;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node))
                    interrupted |= parkAndCheckInterrupt();
            }
        } catch (Throwable t) {
            cancelAcquire(node);
            if (interrupted)
                selfInterrupt();
            throw t;
        }
    }

自旋判斷當前節點的前驅節點是不是頭節點,如果是,就去嘗試獲取鎖。如果獲取失敗或者不是頭節點,就判斷當前節點是否需要阻塞,也就是當前執行緒是否需要掛起以避免空轉浪費CPU資源。這裡注意第7行的setHead(node)方法,實現是這樣:

private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }

因為當前節點的執行緒已經獲取了鎖,所以就把當前節點設定為虛節點,把不必要的屬性置為null。

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            pred.compareAndSetWaitStatus(ws, Node.SIGNAL);
        }
        return false;
    }
/** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /** waitStatus value to indicate thread has cancelled. */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking. */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition. */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate.
         */
        static final int PROPAGATE = -3;

如果前置節點的狀態是SIGNAL,就需要將當前執行緒掛起,其他情況都不掛起。但是由於自旋,這個方法會逐漸將所有空閒執行緒都掛起。具體流程由parkAndCheckInterrupt()執行:

private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

當執行緒被喚醒後,執行緒會執行上面程式碼塊的第3行,return這個執行緒當前的中斷狀態。

喚醒

public void unlock() {
        sync.release(1);
    }
public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

先去嘗試釋放資源,如果釋放成功,就把頭節點的後繼節點喚醒。因為剛才頭節點獲取鎖以後,就變成了虛節點,所以這裡喚醒的是頭節點的後繼節點:

private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            node.compareAndSetWaitStatus(ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node p = tail; p != node && p != null; p = p.prev)
                if (p.waitStatus <= 0)
                    s = p;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

選擇去喚醒一個waitStatus狀態小於0的節點。為什麼倒著遍歷呢?因為之前構建等待佇列的時候,將當前節點掛在獲取的尾節點之後,可能存在多個執行緒併發的問題,更新尾節點要通過CAS。這時候如果正著遍歷就有斷鏈的危險。雖然說倒著遍歷,但是最終選擇的還是最靠近佇列頭的節點。

被喚醒的節點重新獲取鎖:

final boolean acquireQueued(final Node node, int arg) {
        boolean interrupted = false;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node))
                    interrupted |= parkAndCheckInterrupt();
            }
        } catch (Throwable t) {
            cancelAcquire(node);
            if (interrupted)
                selfInterrupt();
            throw t;
        }
    }