1. 程式人生 > 其它 >機器學習—分類3-1(KNN演算法)

機器學習—分類3-1(KNN演算法)

基於KNN預測客戶是否購買汽車新車型

主要步驟流程:

  • 1. 匯入包
  • 2. 匯入資料集
  • 3. 資料預處理
    • 3.1 檢測缺失值
    • 3.2 生成自變數和因變數
    • 3.3 檢視樣本是否均衡
    • 3.4 將資料拆分成訓練集和測試集
    • 3.5 特徵縮放
  • 4. 使用不同的引數構建KNN模型
    • 4.1 模型1:構建KNN模型並訓練模型
      • 4.1.1 構建KNN模型並訓練
      • 4.1.2 預測測試集
      • 4.1.3 生成混淆矩陣
      • 4.1.4 視覺化測試集的預測結果
      • 4.1.5 評估模型效能
    • 4.2 模型2:構建KNN模型並訓練模型
  資料集連結:https://www.heywhale.com/mw/dataset/622f4f9774c3750018981fee/file
 

1. 匯入包

In [2]:
# 匯入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

 

2. 匯入資料集

In [3]:
# 匯入資料集
dataset = pd.read_csv('Social_Network_Ads.csv')
dataset
Out[3]:
  User ID Gender Age EstimatedSalary Purchased
0 15624510
Male 19 19000 0
1 15810944 Male 35 20000 0
2 15668575 Female 26 43000 0
3 15603246 Female 27 57000 0
4 15804002 Male 19 76000 0
... ... ... ... ... ...
395 15691863 Female 46 41000 1
396 15706071 Male 51 23000 1
397 15654296 Female 50 20000 1
398 15755018 Male 36 33000 0
399 15594041 Female 49 36000 1

400 rows × 5 columns

 

3. 資料預處理

3.1 檢測缺失值

In [4]:
# 檢測缺失值
null_df = dataset.isnull().sum()
null_df
Out[4]:
User ID            0
Gender             0
Age                0
EstimatedSalary    0
Purchased          0
dtype: int64

3.2 生成自變數和因變數

為了視覺化分類效果,僅選取 Age 和 EstimatedSalary 這2個欄位作為自變數

In [5]:
# 生成自變數和因變數
X = dataset.iloc[:, [2, 3]].values
X[:5, :]
Out[5]:
array([[   19, 19000],
       [   35, 20000],
       [   26, 43000],
       [   27, 57000],
       [   19, 76000]], dtype=int64)
In [6]:
y = dataset.iloc[:, 4].values
y[:5]
Out[6]:
array([0, 0, 0, 0, 0], dtype=int64)

3.3 檢視樣本是否均衡

In [7]:
# 檢視樣本是否均衡
sample_0 = sum(dataset['Purchased']==0)
sample_1 = sum(dataset['Purchased']==1)
print('不買車的樣本佔總樣本的%.2f' %(sample_0/(sample_0 + sample_1)))
不買車的樣本佔總樣本的0.64

3.4 將資料拆分成訓練集和測試集

In [8]:
# 將資料拆分成訓練集和測試集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(300, 2)
(100, 2)
(300,)
(100,)

3.5 特徵縮放

In [9]:
# 特徵縮放
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

 

4. 使用不同的引數構建KNN模型

4.1 模型1:構建KNN模型並訓練模型

4.1.1 構建KNN模型並訓練

In [10]:
# 使用不同的引數構建KNN模型
# 模型1:構建KNN模型並訓練模型(n_neighbors = 5, weights='uniform', metric = 'minkowski', p = 2)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, weights='uniform', metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
Out[10]:
KNeighborsClassifier()

4.1.2 預測測試集

In [11]:
# 預測測試集
y_pred = classifier.predict(X_test)
y_pred[:5]
Out[11]:
array([0, 0, 0, 0, 0], dtype=int64)

4.1.3 生成混淆矩陣

In [12]:
# 生成混淆矩陣
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
[[64  4]
 [ 3 29]]

4.1.4 視覺化測試集的預測結果

In [13]:
# 視覺化測試集的預測結果
from matplotlib.colors import ListedColormap
plt.figure()
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('pink', 'limegreen')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
​
​
for i, j in enumerate([0,1]):
    print(str(i)+"da"+str(j))
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j,1],
                color = ListedColormap(('red', 'green'))(i), label = j)
plt.title('KNN (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
0da0
1da1
In [14]:
X_set[y_set == 0,1]
Out[14]:
array([ 0.50496393, -0.5677824 ,  0.1570462 ,  0.27301877, -0.5677824 ,
       -1.43757673, -1.58254245, -0.04590581, -0.77073441, -0.59677555,
       -0.42281668, -0.42281668,  0.21503249,  0.47597078,  1.37475825,
        0.21503249,  0.44697764, -1.37959044, -0.65476184, -0.53878926,
       -1.20563157,  0.50496393,  0.30201192, -0.21986468,  0.47597078,
        0.53395707, -0.48080297, -0.33583725, -0.50979612,  0.33100506,
       -0.77073441, -1.03167271,  0.53395707, -0.50979612,  0.41798449,
       -1.43757673, -0.33583725,  0.30201192, -1.14764529, -1.29261101,
       -0.3648304 ,  1.31677196,  0.38899135,  0.30201192, -1.43757673,
       -1.49556302,  0.18603934, -1.26361786,  0.56295021, -0.33583725,
       -0.65476184,  0.01208048,  0.21503249, -0.19087153,  0.56295021,
        0.35999821,  0.27301877, -0.27785096,  0.38899135, -0.42281668,
       -1.00267957,  0.1570462 , -0.27785096, -0.16187839, -0.62576869,
       -1.06066585,  0.41798449, -0.19087153])
In [15]:
np.unique(y_set)
Out[15]:
array([0, 1], dtype=int64)

4.1.5 評估模型效能

In [16]:
# 評估模型效能
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
0.93
In [17]:
(cm[0][0]+cm[1][1])/(cm[0][0]+cm[0][1]+cm[1][0]+cm[1][1])
Out[17]:
0.93

4.2 模型2:構建KNN模型並訓練模型

In [1]:
# 模型2:構建KNN模型並訓練模型(n_neighbors = 3, weights='distance', metric = 'minkowski', p = 1)
classifier = KNeighborsClassifier(n_neighbors = 100, weights='distance', metric = 'minkowski', p = 1)
classifier.fit(X_train, y_train)
In [19]:
# 預測測試集
y_pred = classifier.predict(X_test)
y_pred[:5]
Out[19]:
array([0, 0, 0, 0, 0], dtype=int64)
In [20]:
# 生成混淆矩陣
cm = confusion_matrix(y_test, y_pred)
print(cm)
[[63  5]
 [ 4 28]]
In [21]:
# 視覺化測試集的預測結果
plt.figure()
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
​
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('pink', 'limegreen')))
​
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color = ListedColormap(('red', 'green'))(i), label = j)
plt.title('KNN (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

In [22]:
# 評估模型效能
print(accuracy_score(y_test, y_pred))
0.91

結論:

  1. 由上面2個模型可見,不同超引數對KNN模型的效能影響不同。