尚矽谷 mapreduce wordcount案例
1.7 MapReduce程式設計規範
使用者編寫的程式分成三個部分:Mapper、Reducer和Driver。
1.8 WordCount案例實操
1.8.1 本地測試
1)需求
在給定的文字檔案中統計輸出每一個單詞出現的總次數
(1)輸入資料
(2)期望輸出資料
atguigu 2
banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1
2)需求分析
按照MapReduce程式設計規範,分別編寫Mapper,Reducer,Driver。
3)環境準備
(1)建立maven工程,MapReduceDemo
(2)在pom.xml檔案
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
(2)在專案的src/main/resources
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
(3)建立包名:com.atguigu.mapreduce.wordcount
4)編寫程式
(1)編寫Mapper類
package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 獲取一行
String line = value.toString();
// 2 切割
String[] words = line.split(" ");
// 3 輸出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}
(2)編寫Reducer類
package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
// 1 累加求和
sum = 0;
for (IntWritable count : values) {
sum += count.get();
}
// 2 輸出
v.set(sum);
context.write(key,v);
}
}
(3)編寫Driver驅動類
package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 獲取配置資訊以及獲取job物件
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 關聯本Driver程式的jar
job.setJarByClass(WordCountDriver.class);
// 3 關聯Mapper和Reducer的jar
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 設定Mapper輸出的kv型別
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 設定最終輸出kv型別
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 設定輸入和輸出路徑
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
5)本地測試
(1)需要首先配置好HADOOP_HOME變數以及Windows執行依賴
(2)在IDEA/Eclipse上執行程式
1.8.2 提交到叢集測試
叢集上測試
(1)用maven打jar包,需要新增的打包外掛依賴
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意:如果工程上顯示紅叉。在專案上右鍵->maven->Reimport重新整理即可。
(2)將程式打成jar包
(3)修改不帶依賴的jar包名稱為wc.jar,並拷貝該jar包到Hadoop叢集的/opt/module/hadoop-3.1.3路徑。
(4)啟動Hadoop叢集
[atguigu@hadoop102 hadoop-3.1.3]sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
(5)執行WordCount程式
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar
com.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/input /user/atguigu/output