1. 程式人生 > 其它 >Python pandas 入門 06 資料清洗

Python pandas 入門 06 資料清洗

Pandas 資料清洗

資料清洗是對一些沒有用的資料進行處理的過程。

很多資料集存在資料缺失、資料格式錯誤、錯誤資料或重複資料的情況,如果要對使資料分析更加準確,就需要對這些沒有用的資料進行處理。

在這個教程中,我們將利用 Pandas包來進行資料清洗。

本文使用到的測試資料 property-data.csv 如下:

上表包含來四種空資料:

  • n/a
  • NA
  • na

Pandas 清洗空值

如果我們要刪除包含空欄位的行,可以使用 dropna() 方法,語法格式如下:

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

引數說明:

  • axis:預設為 0,表示逢空值剔除整行,如果設定引數 axis=1 表示逢空值去掉整列。
  • how:預設為 'any' 如果一行(或一列)裡任何一個數據有出現 NA 就去掉整行,如果設定 how='all' 一行(或列)都是 NA 才去掉這整行。
  • thresh:設定需要多少非空值的資料才可以保留下來的。
  • subset:設定想要檢查的列。如果是多個列,可以使用列名的 list 作為引數。
  • inplace:如果設定 True,將計算得到的值直接覆蓋之前的值並返回 None,修改的是源資料。

我們可以通過 isnull() 判斷各個單元格是否為空

例項

import pandas as pd

df 
= pd.read_csv('property-data.csv') print (df['NUM_BEDROOMS']) print (df['NUM_BEDROOMS'].isnull())

 


以上例項輸出結果如下:

以上例子中我們看到 Pandas 把 n/a 和 NA 當作空資料,na 不是空資料,不符合我們要求,我們可以指定空資料型別:

例項

import pandas as pd

missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)

print (df['NUM_BEDROOMS']) print (df['NUM_BEDROOMS'].isnull())

 


以上例項輸出結果如下:

接下來的例項演示了刪除包含空資料的行。

例項

import pandas as pd

df = pd.read_csv('property-data.csv')

new_df = df.dropna()

print(new_df.to_string())

 


以上例項輸出結果如下:

注意:預設情況下,dropna() 方法返回一個新的 DataFrame,不會修改源資料。

如果你要修改源資料 DataFrame, 可以使用 inplace = True 引數:

例項

import pandas as pd

df = pd.read_csv('property-data.csv')

df.dropna(inplace = True)

print(df.to_string())

 


以上例項輸出結果如下:

我們也可以移除指定列有空值的行:

例項

移除 ST_NUM 列中欄位值為空的行:

import pandas as pd

df = pd.read_csv('property-data.csv')

df.dropna(subset=['ST_NUM'], inplace = True)

print(df.to_string())

 


以上例項輸出結果如下:

我們也可以 fillna() 方法來替換一些空欄位

例項

使用 12345 替換空欄位:

import pandas as pd

df = pd.read_csv('property-data.csv')

df.fillna(12345, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下:

我們也可以指定某一個列來替換資料

例項

使用 12345 替換 PID 為空資料:

import pandas as pd

df = pd.read_csv('property-data.csv')

df['PID'].fillna(12345, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下:

替換空單元格的常用方法是計算列的均值、中位數值或眾數。

Pandas使用 mean()、median() 和 mode() 方法計算列的均值(所有值加起來的平均值)、中位數值(排序後排在中間的數)和眾數(出現頻率最高的數)。

例項

使用 mean() 方法計算列的均值並替換空單元格:

import pandas as pd

df = pd.read_csv('property-data.csv')

x = df["ST_NUM"].mean()

df["ST_NUM"].fillna(x, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下,紅框為計算的均值替換來空單元格:

例項

使用 median() 方法計算列的中位數並替換空單元格:

import pandas as pd

df = pd.read_csv('property-data.csv')

x = df["ST_NUM"].median()

df["ST_NUM"].fillna(x, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下,紅框為計算的中位數替換來空單元格:

例項

使用 mode() 方法計算列的眾數並替換空單元格:

import pandas as pd

df = pd.read_csv('property-data.csv')

x = df["ST_NUM"].mode()

df["ST_NUM"].fillna(x, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下,紅框為計算的眾數替換來空單元格:


Pandas 清洗格式錯誤資料

資料格式錯誤的單元格會使資料分析變得困難,甚至不可能。

我們可以通過包含空單元格的行,或者將列中的所有單元格轉換為相同格式的資料。

以下例項會格式化日期:

例項

import pandas as pd

# 第三個日期格式錯誤
data = {
  "Date": ['2020/12/01', '2020/12/02' , '20201226'],
  "duration": [50, 40, 45]
}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

df['Date'] = pd.to_datetime(df['Date'])

print(df.to_string())

 


以上例項輸出結果如下:

           Date  duration
day1 2020-12-01        50
day2 2020-12-02        40
day3 2020-12-26        45

Pandas 清洗錯誤資料

資料錯誤也是很常見的情況,我們可以對錯誤的資料進行替換或移除

以下例項會替換錯誤年齡的資料:

例項

import pandas as pd

person = {
  "name": ['Google', 'Runoob' , 'Taobao'],
  "age": [50, 40, 12345]    # 12345 年齡資料是錯誤的
}

df = pd.DataFrame(person)

df.loc[2, 'age'] = 30 # 修改資料

print(df.to_string())

 


以上例項輸出結果如下:

     name  age
0  Google   50
1  Runoob   40
2  Taobao   30

也可以設定條件語句:

例項

將 age 大於 120 的設定為 120:

import pandas as pd

person = {
  "name": ['Google', 'Runoob' , 'Taobao'],
  "age": [50, 200, 12345]    
}

df = pd.DataFrame(person)

for x in df.index:
  if df.loc[x, "age"] > 120:
    df.loc[x, "age"] = 120

print(df.to_string())

 


以上例項輸出結果如下:

     name  age
0  Google   50
1  Runoob  120
2  Taobao  120

也可以將錯誤資料的行刪除:

例項

將 age 大於 120 的刪除:

import pandas as pd

person = {
  "name": ['Google', 'Runoob' , 'Taobao'],
  "age": [50, 40, 12345]    # 12345 年齡資料是錯誤的
}

df = pd.DataFrame(person)

for x in df.index:
  if df.loc[x, "age"] > 120:
    df.drop(x, inplace = True)

print(df.to_string())

 


以上例項輸出結果如下:

     name  age
0  Google   50
1  Runoob   40

Pandas 清洗重複資料

如果我們要清洗重複資料,可以使用 duplicated()drop_duplicates() 方法。

如果對應的資料是重複的,duplicated() 會返回 True,否則返回 False。

例項

import pandas as pd

person = {
  "name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
  "age": [50, 40, 40, 23]  
}
df = pd.DataFrame(person)

print(df.duplicated())

 


以上例項輸出結果如下:

0    False
1    False
2     True
3    False
dtype: bool

刪除重複資料,可以直接使用drop_duplicates() 方法。

例項

import pandas as pd

persons = {
  "name": ['Google', 'Run', '
Run
', 'Taobao'], "age": [50, 40, 40, 23] } df = pd.DataFrame(persons) df.drop_duplicates(inplace = True) print(df)

 


以上例項輸出結果如下:

     name  age
0  Google   50
1  Run   40
3  Taobao   23

 

REF

https://www.runoob.com/pandas/pandas-cleaning.html