十大排序演算法總結
阿新 • • 發佈:2022-04-01
原文連結:十大排序演算法總結
在Acwing上看到一位大佬寫的,轉載一下qwq
排序演算法的分類:
- 插入:插入,折半插入,希爾
- 交換:冒泡,快速
- 選擇:簡單選擇,堆
- 歸併:歸併(不只二路歸併)
- 基數:
插入排序
void insert_sort() { for (int i = 1; i < n; i ++ ) { int x = a[i]; int j = i-1; while (j >= 0 && x < a[j]) { a[j+1] = a[j]; j -- ; } a[j+1] = x; } }
選擇排序
void select_sort()
{
for (int i = 0; i < n; i ++ )
{
int k = i;
for (int j = i+1; j < n; j ++ )
{
if (a[j] < a[k])
k = j;
}
swap(a[i], a[k]);
}
}
氣泡排序
void bubble_sort() { for (int i = n-1; i >= 1; i -- ) { bool flag = true; for (int j = 1; j <= i; j ++ ) if (a[j-1] > a[j]) { swap(a[j-1], a[j]); flag = false; } if (flag) return; } }
希爾排序
void shell_sort() { for (int gap = n >> 1; gap; gap >>= 1) { for (int i = gap; i < n; i ++ ) { int x = a[i]; int j; for (j = i; j >= gap && a[j-gap] > x; j -= gap) a[j] = a[j-gap]; a[j] = x; } } }
快速排序(最快)
void quick_sort(int l, int r)
{
if (l >= r) return ;
int x = a[l+r>>1], i = l-1, j = r+1;
while (i < j)
{
while (a[++ i] < x);
while (a[-- j] > x);
if (i < j) swap(a[i], a[j]);
}
sort(l, j), sort(j+1, r);
}
歸併排序
void merge_sort(int l, int r)
{
if (l >= r) return;
int temp[N];
int mid = l+r>>1;
merge_sort(l, mid), merge_sort(mid+1, r);
int k = 0, i = l, j = mid+1;
while (i <= mid && j <= r)
{
if (a[i] < a[j]) temp[k ++ ] = a[i ++ ];
else temp[k ++ ] = a[j ++ ];
}
while (i <= mid) temp[k ++ ] = a[i ++ ];
while (j <= r) temp[k ++ ] = a[j ++ ];
for (int i = l, j = 0; i <= r; i ++ , j ++ ) a[i] = temp[j];
}
堆排序
須知此排序為使用了模擬堆,為了使最後一個非葉子節點的編號為n/2,陣列編號從1開始
https://www.cnblogs.com/wanglei5205/p/8733524.html
void down(int u)
{
int t = u;
if (u<<1 <= n && h[u<<1] < h[t]) t = u<<1;
if ((u<<1|1) <= n && h[u<<1|1] < h[t]) t = u<<1|1;
if (u != t)
{
swap(h[u], h[t]);
down(t);
}
}
int main()
{
for (int i = 1; i <= n; i ++ ) cin >> h[i];
for (int i = n/2; i; i -- ) down(i);
while (true)
{
if (!n) break;
cout << h[1] << ' ';
h[1] = h[n];
n -- ;
down(1);
}
return 0;
}
基數排序
int maxbit()
{
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int cnt = 1;
while (maxv >= 10) maxv /= 10, cnt ++ ;
return cnt;
}
void radixsort()
{
int t = maxbit();
int radix = 1;
for (int i = 1; i <= t; i ++ )
{
for (int j = 0; j < 10; j ++ ) count[j] = 0;
for (int j = 0; j < n; j ++ )
{
int k = (a[j] / radix) % 10;
count[k] ++ ;
}
for (int j = 1; j < 10; j ++ ) count[j] += count[j-1];
for (int j = n-1; j >= 0; j -- )
{
int k = (a[j] / radix) % 10;
temp[count[k]-1] = a[j];
count[k] -- ;
}
for (int j = 0; j < n; j ++ ) a[j] = temp[j];
radix *= 10;
}
}
計數排序
void counting_sort()
{
int sorted[N];
int maxv = a[0];
for (int i = 1; i < n; i ++ )
if (maxv < a[i])
maxv = a[i];
int count[maxv+1];
for (int i = 0; i < n; i ++ ) count[a[i]] ++ ;
for (int i = 1; i <= maxv; i ++ ) count[i] += count[i-1];
for (int i = n-1; i >= 0; i -- )
{
sorted[count[a[i]]-1] = a[i];
count[a[i]] -- ;
}
for (int i = 0; i < n; i ++ ) a[i] = sorted[i];
}
桶排序
基數排序是桶排序的特例,優勢是可以處理浮點數和負數,劣勢是還要配合別的排序函式
vector<int> bucketSort(vector<int>& nums) {
int n = nums.size();
int maxv = *max_element(nums.begin(), nums.end());
int minv = *min_element(nums.begin(), nums.end());
int bs = 1000;
int m = (maxv-minv)/bs+1;
vector<vector<int> > bucket(m);
for (int i = 0; i < n; ++i) {
bucket[(nums[i]-minv)/bs].push_back(nums[i]);
}
int idx = 0;
for (int i = 0; i < m; ++i) {
int sz = bucket[i].size();
bucket[i] = quickSort(bucket[i]);
for (int j = 0; j < sz; ++j) {
nums[idx++] = bucket[i][j];
}
}
return nums;
}