LeetCode 0064 Minimum Path Sum
阿新 • • 發佈:2022-04-06
1. 題目描述
2. Solution 1
1、思路分析
1. 狀態定義
minSum[i][j] 表示 到達grid[i][j]是的路徑最小和
2. 初始狀態
首行(i=0) minSum[i][j] = minSum[i][j - 1] + grid[i][j]
首列(j=0) minSum[i][j] = minSum[i - 1][j] + grid[i][j]
3. 狀態轉移方程
minSum[i][j] = min(minSum[i - 1][j], minSum[i][j - 1]) + grid[i][j]
2、程式碼實現
package Q0099.Q0064MinimumPathSum; /* 1. 狀態定義 minSum[i][j] 表示 到達grid[i][j]是的路徑最小和 2. 初始狀態 首行(i=0) minSum[i][j] = minSum[i][j - 1] + grid[i][j] 首列(j=0) minSum[i][j] = minSum[i - 1][j] + grid[i][j] 3. 狀態轉移方程 minSum[i][j] = min(minSum[i - 1][j], minSum[i][j - 1]) + grid[i][j] */ public class Solution { /* This is a typical DP problem. Suppose the minimum path sum of arriving at point (i, j) is S[i][j], then the state equation is S[i][j] = min(S[i - 1][j], S[i][j - 1]) + grid[i][j]. Well, some boundary conditions need to be handled. The boundary conditions happen on the topmost row (S[i - 1][j] does not exist) and the leftmost column (S[i][j - 1] does not exist). Suppose grid is like [1, 1, 1, 1], then the minimum sum to arrive at each point is simply an accumulation of previous points and the result is [1, 2, 3, 4]. Now we can write down the following (unoptimized) code. */ public int minPathSum(int[][] grid) { int m = grid.length, n = grid[0].length; int[][] minSum = new int[m][n]; minSum[0][0] = grid[0][0]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // 若 i = 0, 就不計算 i - 1,否則越界 if (i == 0 && j > 0) minSum[i][j] = minSum[i][j - 1] + grid[i][j]; else if (j == 0 && i > 0) minSum[i][j] = minSum[i - 1][j] + grid[i][j]; else if (i > 0 && j > 0) minSum[i][j] = Math.min(minSum[i][j - 1], minSum[i - 1][j]) + grid[i][j]; } } return minSum[m - 1][n - 1]; } }
3、複雜度分析
時間複雜度: O(m * n)
空間複雜度: O(m * n)
3. Solution 2
1、思路分析
降低維度,只保留2行。
2、程式碼實現
package Q0099.Q0064MinimumPathSum; public class Solution2 { /* As can be seen, each time when we update sum[i][j], we only need sum[i - 1][j] (at the current column) and sum[i][j - 1] (at the left column). So we need not maintain the full m*n matrix. Maintaining two columns is enough and now we have the following code. */ public int minPathSum(int[][] grid) { int m = grid.length, n = grid[0].length; int[] pre = new int[m]; int[] cur = new int[m]; pre[0] = grid[0][0]; for (int i = 1; i < m; i++) pre[i] = pre[i - 1] + grid[i][0]; for (int j = 1; j < n; j++) { cur[0] = pre[0] + grid[0][j]; for (int i = 1; i < m; i++) cur[i] = Math.min(cur[i - 1], pre[i]) + grid[i][j]; swapArray(pre, cur); } return pre[m - 1]; } private void swapArray(int[] pre, int[] cur) { for (int i = 0; i < pre.length; i++) { int tmp = pre[i]; pre[i] = cur[i]; cur[i] = tmp; } } }
3、複雜度分析
時間複雜度: O(m * n)
空間複雜度: O(n)
4. Solution 3
1、思路分析
進一步減低維度,只保留1行。
2、程式碼實現
package Q0099.Q0064MinimumPathSum; public class Solution3 { /* Further inspecting the above code, it can be seen that maintaining pre is for recovering pre[i], which is simply cur[i] before its update. So it is enough to use only one vector. Now the space is further optimized and the code also gets shorter. */ public int minPathSum(int[][] grid) { int m = grid.length, n = grid[0].length; int[] cur = new int[m]; cur[0] = grid[0][0]; for (int i = 1; i < m; i++) cur[i] = cur[i - 1] + grid[i][0]; for (int j = 1; j < n; j++) { cur[0] += grid[0][j]; for (int i = 1; i < m; i++) cur[i] = Math.min(cur[i - 1], cur[i]) + grid[i][j]; } return cur[m - 1]; } }
3、複雜度分析
時間複雜度: O(m * n)
空間複雜度: O(n)