The beginning of the dream!
阿新 • • 發佈:2022-04-06
簡介
邏輯迴歸: 使用了邏輯迴歸函式對資料進行了擬合就叫邏輯迴歸??
\[P(x)=\frac{1}{1+e^{-x}}(sigmoid function) \] \[y= \begin{cases}1, & P(x) \geq 0.5 \\ \hline 0, & P(x)<0.5\end{cases} \]其中y為分類結果,P為概率分佈,x為特徵值。
分類問題的核心就是尋找決策邊界。
損失函式
\[J_{i}=\left\{\begin{array}{l} -\log \left(P\left(x_{i}\right)\right), \text { if } y_{i}=1 \\ -\log \left(1-P\left(x_{i}\right)\right), \text { if } y_{i}=0 \end{array}\right. \]聯合表示
重複計算直至收斂
\[\left\{\begin{aligned} t e m p_{\theta_{j}} &=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \\ \theta_{j} &=t e m p_{\theta_{j}} \end{aligned}\right\} \]評估模型表現
使用準確率
參考連結
https://blog.csdn.net/weixin_46344368/article/details/105904589?spm=1001.2014.3001.5502
code
學生考試成績已知兩門成績判定第三門成績是否會合格
import pandas as pd import numpy as np data = pd.read_csv('examdata.csv') data.head() #visalize the data from matplotlib import pyplot as plt fig1=plt.figure() plt.scatter(data.loc[:,'Exam1'],data.loc[:,'Exam2']) plt.title('Exam1-Exam2') plt.xlabel('Exam1') plt.ylabel('Exam2') plt.show() # add label mask mask=data.loc[:,'Pass']==1 print(mask) # print(~mask) fig2=plt.figure() passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask]) failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask]) plt.title('Exam1-Exam2') plt.xlabel('Exam1') plt.ylabel('Exam2') plt.legend((passed,failed),('passed','failed')) plt.show() #define X,y X = data.drop(['Pass'],axis=1) y = data.loc[:,'Pass'] #X.head() X1 = data.loc[:,'Exam1'] X2 = data.loc[:, 'Exam2'] y.head() # eatablish the model and train it from sklearn.linear_model import LogisticRegression LR = LogisticRegression() LR.fit(X,y) # show the predicted result and its accuracy y_predict = LR.predict(X) print(y_predict) from sklearn.metrics import accuracy_score accuracy = accuracy_score(y,y_predict) print(accuracy) #exam1 = 70, exam2=65 y_test = LR.predict([[70,65]]) print('passed' if y_test==1 else 'failed') print(LR.coef_,LR.intercept_) theta0 = LR.intercept_ theta1,theta2 = LR.coef_[0][0],LR.coef_[0][1] print(theta0,theta1,theta2) X2_new = -(theta0+theta1*X1)/theta2 print(X2_new) # 邊界函式 fig3 = plt.figure() passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask]) failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask]) plt.plot(X1,X2_new) #畫出決策邊界 plt.title('Exam1-Exam2') plt.xlabel('Exam1') plt.ylabel('Exam2') plt.legend((passed,failed),('passed','failed')) plt.show() # create new data X1_2 = X1*X1 X2_2 = X2*X2 X1_X2 = X1*X2 print(X1,X1_2) X_new = {'X1':X1,'X2':X2,'X1_2':X1_2,'X2_2':X2_2,'X1_X2':X1_X2} X_new = pd.DataFrame(X_new) print(X_new) LR2 = LogisticRegression() LR2.fit(X_new,y) y2_predict = LR2.predict(X_new) accuracy2 = accuracy_score(y,y2_predict) print(accuracy2) X1_new = X1.sort_values() print(X1,X1_new) theta0=LR2.intercept_ theta1,theta2,theta3,theta4,theta5=LR2.coef_[0][0],LR2.coef_[0][1],LR2.coef_[0][2],LR2.coef_[0][3],LR2.coef_[0][4] a = theta4 b = theta5*X1_new+theta2 c = theta0+theta1*X1_new+theta3*X1_new*X1_new X2_new_boundary = (-b+np.sqrt(b*b-4*a*c))/(2*a) print(X2_new_boundary) fig5 = plt.figure() passed=plt.scatter(data.loc[:,'Exam1'][mask],data.loc[:,'Exam2'][mask]) failed=plt.scatter(data.loc[:,'Exam1'][~mask],data.loc[:,'Exam2'][~mask]) plt.plot(X1_new,X2_new_boundary) #畫出決策邊界 plt.title('Exam1-Exam2') plt.xlabel('Exam1') plt.ylabel('Exam2') plt.legend((passed,failed),('passed','failed')) plt.show()