1. 程式人生 > 實用技巧 >[POJ3464]Sightseeing(次短路)

[POJ3464]Sightseeing(次短路)

【原題】

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F

, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S

to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, BN, AB and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ S, FN and SF: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample

Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

【思路】記錄最短路和次短路,用其進行鬆弛。

  1 #include <algorithm>
  2 #include <cmath>
  3 #include <cstdio>
  4 #include <cstring>
  5 #include <list>
  6 #include <map>
  7 #include <iostream>
  8 #include <queue>
  9 #include <set>
 10 #include <stack>
 11 #include <string>
 12 #include <vector>
 13 #include <iomanip>
 14 #define LL long long
 15 #define inf 0x3f3f3f3f
 16 #define INF 0x3f3f3f3f3f3f
 17 #define PI 3.1415926535898
 18 #define F first
 19 #define S second
 20 #define lson  rt << 1
 21 #define rson  rt << 1 | 1
 22 using namespace std;
 23 
 24 const int maxn = 1e3 + 7;
 25 const int maxm = 1e4 + 7;
 26 int vis[maxn][2], num[maxn][2];
 27 int dis[maxn][2];
 28 int n, m;
 29 
 30 struct pp
 31 {
 32     int v, next, w;
 33 }edge[maxm];
 34 int head[maxn];
 35 int cnt = 0;
 36 struct node
 37 {
 38     int u, flag, dis;
 39     bool operator < (const node& a) const
 40     {
 41         return a.dis < dis;
 42     }
 43 };
 44 void add(int t1, int t2, int t3)
 45 {
 46     edge[++cnt].v = t2;
 47     edge[cnt].w = t3;
 48     edge[cnt].next = head[t1];
 49     head[t1] = cnt;
 50 }
 51 int dijkstra(int b, int end)
 52 {
 53     priority_queue<node> que;
 54     int i;
 55     for (int i = 1; i <= n; i++)
 56     {
 57         vis[i][0] = vis[i][1] = 0;
 58         dis[i][0] = dis[i][1] = inf;
 59         num[i][0] = num[i][1] = 0;
 60     }
 61     dis[b][0] = 0;
 62     num[b][0] = 1;
 63     node temp;
 64     temp.u = b, temp.dis = 0, temp.flag = 0;
 65     que.push(temp);
 66     while (!que.empty())
 67     {
 68         int u = que.top().u;
 69         int sta = que.top().flag;
 70         que.pop();
 71         if (vis[u][sta]) continue;
 72         vis[u][sta] = 1;
 73         for (i = head[u]; i; i = edge[i].next)
 74         {
 75             int v = edge[i].v;
 76             int dst = dis[u][sta] + edge[i].w;
 77             if (dis[v][0] > dst)
 78             {
 79                 if (dis[v][0] != inf)
 80                 {
 81                     dis[v][1] = dis[v][0];
 82                     num[v][1] = num[v][0];
 83                     temp.u = v, temp.dis = dis[v][1], temp.flag = 1;
 84                     que.push(temp);
 85                 }
 86                 dis[v][0] = dst;
 87                 num[v][0] = num[u][sta];
 88                 temp.u = v, temp.dis = dis[v][0], temp.flag = 0;
 89                 que.push(temp);
 90             }
 91             else if (dis[v][0] == dst)
 92             {
 93                 num[v][0] += num[u][sta];
 94             }
 95             else if (dis[v][1] > dst)
 96             {
 97                 dis[v][1] = dst;
 98                 num[v][1] = num[u][sta];
 99                 temp.u = v, temp.dis = dis[v][1], temp.flag = 1;
100                 que.push(temp);
101             }
102             else if (dis[v][1] == dis[u][sta] + edge[i].w)
103             {
104                 num[v][1]+= num[u][sta];
105             }
106         }
107     }
108     if (dis[end][0] - dis[end][1] == -1) return num[end][0] + num[end][1];
109     return num[end][0];
110 }
111 
112 int main()
113 {
114     ios::sync_with_stdio(false);
115     cin.tie(0);
116     int t;
117     scanf("%d", &t);
118     while (t--)
119     {
120         memset(head, 0, sizeof(head));
121         scanf("%d%d", &n, &m);
122         cnt = 0;
123         int ta, tb, tv;
124         for (int i = 1; i <= m; i++)
125         {
126             scanf("%d%d%d", &ta, &tb, &tv);
127             add(ta, tb, tv);
128         }
129         int s, f;
130         scanf("%d%d", &s, &f);
131         int res = dijkstra(s, f);
132         printf("%d\n", res);
133     }
134 }