Solution -「洛谷 P4320」道路相遇
阿新 • • 發佈:2020-07-22
\(\mathcal{Description}\)
Link.
給定一個 \(n\) 個點 \(m\) 條邊的連通無向圖,並給出 \(q\) 個點對 \((u,v)\),詢問 \(u\) 到 \(v\) 的路徑所必經的結點個數。
\(n,q\le5\times10^5\),\(q\le\min\{\frac{n(n-1)}2,10^6\}\)。
\(\mathcal{Solution}\)
大概是雙倍經驗吧。
建出圓方樹,預處理圓方樹上每個點到根經過的圓點個數,然後求 LCA 計算答案即可。
\(\mathcal{Code}\)
#include <cstdio> const int MAXN = 5e5, MAXM = 1e6; int n, m, q, snode; int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5]; int dep[MAXN * 2 + 5], cnt[MAXN * 2], fa[MAXN * 2 + 5][20]; struct Graph { int ecnt, head[MAXN * 2 + 5], to[MAXM * 2 + 5], nxt[MAXM * 2 + 5]; inline void link ( const int s, const int t ) { to[++ ecnt] = t, nxt[ecnt] = head[s]; head[s] = ecnt; } inline void add ( const int u, const int v ) { link ( u, v ), link ( v, u ); } } src, tre; inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; } inline void Tarjan ( const int u, const int f ) { dfn[u] = low[u] = ++ dfc, stk[++ top] = u; for ( int i = src.head[u], v; i; i = src.nxt[i] ) { if ( ( v = src.to[i] ) == f ) continue; if ( ! dfn[v] ) { Tarjan ( v, u ), chkmin ( low[u], low[v] ); if ( low[v] >= dfn[u] ) { tre.add ( u, ++ snode ); do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v ); } } else chkmin ( low[u], dfn[v] ); } } inline void init ( const int u, const int f ) { dep[u] = dep[fa[u][0] = f] + 1, cnt[u] = cnt[f] + ( u <= n ); for ( int i = 1; i <= 19; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1]; for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) { if ( ( v = tre.to[i] ) ^ f ) { init ( v, u ); } } } inline int calcLCA ( int u, int v ) { if ( dep[u] < dep[v] ) u ^= v ^= u ^= v; for ( int i = 19; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i]; if ( u == v ) return u; for ( int i = 19; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i]; return fa[u][0]; } int main () { scanf ( "%d %d", &n, &m ), snode = n; for ( int i = 1, u, v; i <= m; ++ i ) { scanf ( "%d %d", &u, &v ); src.add ( u, v ); } Tarjan ( 1, 0 ), init ( 1, 0 ); scanf ( "%d", &q ); for ( int i = 1, u, v; i <= q; ++ i ) { scanf ( "%d %d", &u, &v ); int w = calcLCA ( u, v ); printf ( "%d\n", cnt[u] + cnt[v] - cnt[w] - cnt[fa[w][0]] ); } return 0; }