1. 程式人生 > 其它 >springboot kafka整合(實現producer和consumer)

springboot kafka整合(實現producer和consumer)

本文介紹如何在springboot專案中整合kafka收發message。

1、先解決依賴

springboot相關的依賴我們就不提了,和kafka相關的只依賴一個spring-kafka整合包

<dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
            <version>1.1.1.RELEASE</version>
        </dependency>

 這裡我們先把配置檔案展示一下

#============== kafka ===================
kafka.consumer.zookeeper.connect=10.93.21.21:2181
kafka.consumer.servers=10.93.21.21:9092
kafka.consumer.enable.auto.commit=true
kafka.consumer.session.timeout=6000
kafka.consumer.auto.commit.interval=100
kafka.consumer.auto.offset.reset=latest
kafka.consumer.topic=test
kafka.consumer.group.id=test
kafka.consumer.concurrency=10

kafka.producer.servers=10.93.21.21:9092
kafka.producer.retries=0
kafka.producer.batch.size=4096
kafka.producer.linger=1
kafka.producer.buffer.memory=40960

2、Configuration:Kafka producer 

1)通過@Configuration、@EnableKafka,宣告Config並且開啟KafkaTemplate能力。

2)通過@Value注入application.properties配置檔案中的kafka配置。

3)生成bean,@Bean

package com.kangaroo.sentinel.collect.configuration;

import java.util.HashMap;
import java.util.Map;

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

@Configuration
@EnableKafka
public class KafkaProducerConfig {

    @Value("${kafka.producer.servers}")
    private String servers;
    @Value("${kafka.producer.retries}")
    private int retries;
    @Value("${kafka.producer.batch.size}")
    private int batchSize;
    @Value("${kafka.producer.linger}")
    private int linger;
    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;


    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
}

實驗我們的producer,寫一個Controller。想topic=test,key=key,傳送訊息message

package com.kangaroo.sentinel.collect.controller;

import com.kangaroo.sentinel.common.response.Response;
import com.kangaroo.sentinel.common.response.ResultCode;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;


@RestController
@RequestMapping("/kafka")
public class CollectController {
    protected final Logger logger = LoggerFactory.getLogger(this.getClass());
    @Autowired
    private KafkaTemplate kafkaTemplate;

    @RequestMapping(value = "/send", method = RequestMethod.GET)
    public Response sendKafka(HttpServletRequest request, HttpServletResponse response) {
        try {
            String message = request.getParameter("message");
            logger.info("kafka的訊息={}", message);
            kafkaTemplate.send("test", "key", message);
            logger.info("傳送kafka成功.");
            return new Response(ResultCode.SUCCESS, "傳送kafka成功", null);
        } catch (Exception e) {
            logger.error("傳送kafka失敗", e);
            return new Response(ResultCode.EXCEPTION, "傳送kafka失敗", null);
        }
    }

}

3、configuration:kafka consumer

1)通過@Configuration、@EnableKafka,宣告Config並且開啟KafkaTemplate能力。

2)通過@Value注入application.properties配置檔案中的kafka配置。

3)生成bean,@Bean

package com.kangaroo.sentinel.collect.configuration;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaConsumerConfig {

    @Value("${kafka.consumer.servers}")
    private String servers;
    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;
    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;
    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;
    @Value("${kafka.consumer.group.id}")
    private String groupId;
    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.consumer.concurrency}")
    private int concurrency;
    @Bean
    public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setPollTimeout(1500);
        return factory;
    }

    public ConsumerFactory<String, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }


    public Map<String, Object> consumerConfigs() {
        Map<String, Object> propsMap = new HashMap<>();
        propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }

    @Bean
    public Listener listener() {
        return new Listener();
    }

}

new Listener()生成一個bean用來處理從kafka讀取的資料。Listener簡單的實現demo如下:只是簡單的讀取並列印key和message值

@KafkaListener中topics屬性用於指定kafka topic名稱,topic名稱由訊息生產者指定,也就是由kafkaTemplate在傳送訊息時指定。

package com.kangaroo.sentinel.collect.configuration;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;

public class Listener {
    protected final Logger logger = LoggerFactory.getLogger(this.getClass());


    @KafkaListener(topics = {"test"})
    public void listen(ConsumerRecord<?, ?> record) {
        logger.info("kafka的key: " + record.key());
        logger.info("kafka的value: " + record.value().toString());
    }
}

tips:

1)我沒有介紹如何安裝配置kafka,配置kafka時最好用完全bind網路ip的方式,而不是localhost或者127.0.0.1

2)最好不要使用kafka自帶的zookeeper部署kafka,可能導致訪問不通。

3)理論上consumer讀取kafka應該是通過zookeeper,但是這裡我們用的是kafkaserver的地址,為什麼沒有深究。

4)定義監聽訊息配置時,GROUP_ID_CONFIG配置項的值用於指定消費者組的名稱,如果同組中存在多個監聽器物件則只有一個監聽器物件能收到訊息。