基於input子系統的sensor驅動除錯(二)
繼上一篇:https://cloud.tencent.com/developer/article/1054078
一、驅動流程解析:
1、模組載入:
1 static struct of_device_id stk_match_table[] = { 2 { .compatible = "stk,stk3x1x", }, 3 { }, 4 }; 5 6 static struct i2c_driver stk_ps_driver = 7 { 8 .driver = { 9 .name = DEVICE_NAME, 10 .owner = THIS_MODULE, 11 .of_match_table = stk_match_table, 12 }, 13 .probe = stk3x1x_probe, 14 .remove = stk3x1x_remove, 15 .id_table = stk_ps_id, 16 }; 17 18 19 static int __init stk3x1x_init(void) 20 { 21 int ret; 22 ret = i2c_add_driver(&stk_ps_driver); 23 if (ret) 24 return ret; 25 26 return 0; 27 } 28 29 static void __exit stk3x1x_exit(void) 30 { 31 i2c_del_driver(&stk_ps_driver); 32 }
of_device_id與DTS中的匹配,這與核心2.6以前的i2c_board_info不一樣;
核心載入驅動模組的時候將呼叫到stk3x1x_init()方法:
初始化了i2c_driver結構體給stk_ps_driver變數,將用於將設備註冊到IIC。關鍵在於結構體中的probe()方法,註冊完成的時候將呼叫;
2、stk3x1x驅動初始化-probe函式:
1 static int stk3x1x_probe(struct i2c_client *client, 2 const struct i2c_device_id *id) 3 { 4 int err = -ENODEV; 5 struct stk3x1x_data *ps_data; 6 struct stk3x1x_platform_data *plat_data; 7 printk(KERN_INFO "%s: driver version = %sn", __func__, DRIVER_VERSION); 8 9 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 10 { 11 printk(KERN_ERR "%s: No Support for I2C_FUNC_SMBUS_BYTE_DATAn", __func__); 12 return -ENODEV; 13 } 14 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) 15 { 16 printk(KERN_ERR "%s: No Support for I2C_FUNC_SMBUS_WORD_DATAn", __func__); 17 return -ENODEV; 18 } 19 20 ps_data = kzalloc(sizeof(struct stk3x1x_data),GFP_KERNEL); 21 if(!ps_data) 22 { 23 printk(KERN_ERR "%s: failed to allocate stk3x1x_datan", __func__); 24 return -ENOMEM; 25 } 26 ps_data->client = client; 27 i2c_set_clientdata(client,ps_data); 28 mutex_init(&ps_data->io_lock); 29 wake_lock_init(&ps_data->ps_wakelock,WAKE_LOCK_SUSPEND, "stk_input_wakelock"); 30 31 #ifdef STK_POLL_PS 32 wake_lock_init(&ps_data->ps_nosuspend_wl,WAKE_LOCK_SUSPEND, "stk_nosuspend_wakelock"); 33 #endif 34 if (client->dev.of_node) { 35 plat_data = devm_kzalloc(&client->dev, 36 sizeof(struct stk3x1x_platform_data), GFP_KERNEL); 37 if (!plat_data) { 38 dev_err(&client->dev, "Failed to allocate memoryn"); 39 return -ENOMEM; 40 } 41 42 err = stk3x1x_parse_dt(&client->dev, plat_data); 43 dev_err(&client->dev, 44 "%s: stk3x1x_parse_dt ret=%dn", __func__, err); 45 if (err) 46 return err; 47 } else 48 plat_data = client->dev.platform_data; 49 50 if (!plat_data) { 51 dev_err(&client->dev, 52 "%s: no stk3x1x platform data!n", __func__); 53 goto err_als_input_allocate; 54 } 55 ps_data->als_transmittance = plat_data->transmittance; 56 ps_data->int_pin = plat_data->int_pin; 57 ps_data->use_fir = plat_data->use_fir; 58 ps_data->pdata = plat_data; 59 60 if (ps_data->als_transmittance == 0) { 61 dev_err(&client->dev, 62 "%s: Please set als_transmittancen", __func__); 63 goto err_als_input_allocate; 64 } 65 66 ps_data->als_input_dev = devm_input_allocate_device(&client->dev); 67 if (ps_data->als_input_dev==NULL) 68 { 69 printk(KERN_ERR "%s: could not allocate als devicen", __func__); 70 err = -ENOMEM; 71 goto err_als_input_allocate; 72 } 73 ps_data->ps_input_dev = devm_input_allocate_device(&client->dev); 74 if (ps_data->ps_input_dev==NULL) 75 { 76 printk(KERN_ERR "%s: could not allocate ps devicen", __func__); 77 err = -ENOMEM; 78 goto err_als_input_allocate; 79 } 80 ps_data->als_input_dev->name = ALS_NAME; 81 ps_data->ps_input_dev->name = PS_NAME; 82 set_bit(EV_ABS, ps_data->als_input_dev->evbit); 83 set_bit(EV_ABS, ps_data->ps_input_dev->evbit); 84 input_set_abs_params(ps_data->als_input_dev, ABS_MISC, 0, stk_alscode2lux(ps_data, (1<<16)-1), 0, 0); 85 input_set_abs_params(ps_data->ps_input_dev, ABS_DISTANCE, 0,1, 0, 0); 86 err = input_register_device(ps_data->als_input_dev); 87 if (err<0) 88 { 89 printk(KERN_ERR "%s: can not register als input devicen", __func__); 90 goto err_als_input_allocate; 91 } 92 err = input_register_device(ps_data->ps_input_dev); 93 if (err<0) 94 { 95 printk(KERN_ERR "%s: can not register ps input devicen", __func__); 96 goto err_als_input_allocate; 97 } 98 99 err = sysfs_create_group(&ps_data->als_input_dev->dev.kobj, &stk_als_attribute_group); 100 if (err < 0) 101 { 102 printk(KERN_ERR "%s:could not create sysfs group for alsn", __func__); 103 goto err_als_input_allocate; 104 } 105 err = sysfs_create_group(&ps_data->ps_input_dev->dev.kobj, &stk_ps_attribute_group); 106 if (err < 0) 107 { 108 printk(KERN_ERR "%s:could not create sysfs group for psn", __func__); 109 goto err_ps_sysfs_create_group; 110 } 111 input_set_drvdata(ps_data->als_input_dev, ps_data); 112 input_set_drvdata(ps_data->ps_input_dev, ps_data); 113 114 #ifdef STK_POLL_ALS 115 ps_data->stk_als_wq = create_singlethread_workqueue("stk_als_wq"); 116 INIT_WORK(&ps_data->stk_als_work, stk_als_work_func); 117 hrtimer_init(&ps_data->als_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 118 ps_data->als_poll_delay = ns_to_ktime(110 * NSEC_PER_MSEC); 119 ps_data->als_timer.function = stk_als_timer_func; 120 #endif 121 122 ps_data->stk_ps_wq = create_singlethread_workqueue("stk_ps_wq"); 123 INIT_WORK(&ps_data->stk_ps_work, stk_ps_work_func); 124 hrtimer_init(&ps_data->ps_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 125 ps_data->ps_poll_delay = ns_to_ktime(110 * NSEC_PER_MSEC); 126 ps_data->ps_timer.function = stk_ps_timer_func; 127 #if (!defined(STK_POLL_ALS) || !defined(STK_POLL_PS)) 128 ps_data->stk_wq = create_singlethread_workqueue("stk_wq"); 129 INIT_WORK(&ps_data->stk_work, stk_work_func); 130 err = stk3x1x_setup_irq(client); 131 if(err < 0) 132 goto err_stk3x1x_setup_irq; 133 #endif 134 135 err = stk3x1x_power_init(ps_data, true); 136 if (err) 137 goto err_power_init; 138 139 err = stk3x1x_power_ctl(ps_data, true); 140 if (err) 141 goto err_power_on; 142 143 ps_data->als_enabled = false; 144 ps_data->ps_enabled = false; 145 #ifdef CONFIG_HAS_EARLYSUSPEND 146 ps_data->stk_early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; 147 ps_data->stk_early_suspend.suspend = stk3x1x_early_suspend; 148 ps_data->stk_early_suspend.resume = stk3x1x_late_resume; 149 register_early_suspend(&ps_data->stk_early_suspend); 150 #endif 151 /* make sure everything is ok before registering the class device */ 152 ps_data->als_cdev = sensors_light_cdev; 153 ps_data->als_cdev.sensors_enable = stk_als_enable_set; 154 ps_data->als_cdev.sensors_poll_delay = stk_als_poll_delay_set; 155 err = sensors_classdev_register(&client->dev, &ps_data->als_cdev); 156 if (err) 157 goto err_power_on; 158 159 ps_data->ps_cdev = sensors_proximity_cdev; 160 ps_data->ps_cdev.sensors_enable = stk_ps_enable_set; 161 err = sensors_classdev_register(&client->dev, &ps_data->ps_cdev); 162 if (err) 163 goto err_class_sysfs; 164 165 /* enable device power only when it is enabled */ 166 err = stk3x1x_power_ctl(ps_data, false); 167 if (err) 168 goto err_init_all_setting; 169 170 dev_dbg(&client->dev, "%s: probe successfully", __func__); 171 172 return 0; 173 174 err_init_all_setting: 175 stk3x1x_power_ctl(ps_data, false); 176 sensors_classdev_unregister(&ps_data->ps_cdev); 177 err_class_sysfs: 178 sensors_classdev_unregister(&ps_data->als_cdev); 179 err_power_on: 180 stk3x1x_power_init(ps_data, false); 181 err_power_init: 182 #ifndef STK_POLL_PS 183 free_irq(ps_data->irq, ps_data); 184 gpio_free(plat_data->int_pin); 185 #endif 186 #if (!defined(STK_POLL_ALS) || !defined(STK_POLL_PS)) 187 err_stk3x1x_setup_irq: 188 #endif 189 #ifdef STK_POLL_ALS 190 hrtimer_try_to_cancel(&ps_data->als_timer); 191 destroy_workqueue(ps_data->stk_als_wq); 192 #endif 193 destroy_workqueue(ps_data->stk_ps_wq); 194 #if (!defined(STK_POLL_ALS) || !defined(STK_POLL_PS)) 195 destroy_workqueue(ps_data->stk_wq); 196 #endif 197 sysfs_remove_group(&ps_data->ps_input_dev->dev.kobj, &stk_ps_attribute_group); 198 err_ps_sysfs_create_group: 199 sysfs_remove_group(&ps_data->als_input_dev->dev.kobj, &stk_als_attribute_group); 200 err_als_input_allocate: 201 #ifdef STK_POLL_PS 202 wake_lock_destroy(&ps_data->ps_nosuspend_wl); 203 #endif 204 wake_lock_destroy(&ps_data->ps_wakelock); 205 mutex_destroy(&ps_data->io_lock); 206 kfree(ps_data); 207 return err; 208 }
在stk3x1x_probe函式中主要做了:
1、為驅動私有資料結構體stk3x1x_data分配記憶體空間;
2、 將裝置驅動的私有資料(stk3x1x_data)連線到裝置client(i2c_client)中;(bma255會增加一步:讀取i2c的id);
3、將stk3x1x驅動註冊到linux input子系統;
4、建立工作佇列(主要是對sensor的資料採集);
5、建立sysfs介面;
2.1 建立input子系統:
http://blog.csdn.net/ielife/article/details/7798952
1、 在驅動載入模組中,設定你的input裝置支援的事件型別;
2、 註冊中斷處理函式,例如鍵盤裝置需要編寫按鍵的抬起、放下,觸控式螢幕裝置需要編寫按下、抬起、絕對移動,滑鼠裝置需要編寫單擊、抬起、相對移動,並且需要在必要的時候提交硬體資料(鍵值/座標/狀態等等);
3、將輸入設備註冊到輸入子系統中;
1 ps_data->als_input_dev = devm_input_allocate_device(&client->dev); //分配記憶體空間
2 if (ps_data->als_input_dev==NULL)
3 {
4 printk(KERN_ERR "%s: could not allocate als devicen", __func__);
5 err = -ENOMEM;
6 goto err_als_input_allocate;
7 }
8 ps_data->ps_input_dev = devm_input_allocate_device(&client->dev);
9 if (ps_data->ps_input_dev==NULL)
10 {
11 printk(KERN_ERR "%s: could not allocate ps devicen", __func__);
12 err = -ENOMEM;
13 goto err_als_input_allocate;
14 }
15 ps_data->als_input_dev->name = ALS_NAME;
16 ps_data->ps_input_dev->name = PS_NAME;
17 set_bit(EV_ABS, ps_data->als_input_dev->evbit);
18 set_bit(EV_ABS, ps_data->ps_input_dev->evbit);
19 input_set_abs_params(ps_data->als_input_dev, ABS_MISC, 0, stk_alscode2lux(ps_data, (1<<16)-1), 0, 0); //設定input載入型別;
20 input_set_abs_params(ps_data->ps_input_dev, ABS_DISTANCE, 0,1, 0, 0);
21 err = input_register_device(ps_data->als_input_dev);
22 if (err<0)
23 {
24 printk(KERN_ERR "%s: can not register als input devicen", __func__);
25 goto err_als_input_allocate;
26 }
27 err = input_register_device(ps_data->ps_input_dev);
28 if (err<0)
29 {
30 printk(KERN_ERR "%s: can not register ps input devicen", __func__);
31 goto err_als_input_allocate;
32 }
1 err = stk3x1x_setup_irq(client); //設定驅動中斷函式
2 if(err < 0)
3 goto err_stk3x1x_setup_irq;
2.2 建立工作佇列:
先提一個問題,為什麼要建立工作佇列?在前面的介紹中我們知道,sensor感測器獲取資料後,將資料傳給controller的暫存器中,供主控去查詢讀取資料。所以這裡建立的工作佇列,就是在一個工作者執行緒,通過IIC不斷的去查詢讀取controller上的資料。
工作佇列的作用就是把工作推後,交由一個核心執行緒去執行,更直接的說就是如果寫了一個函式,而現在不想馬上執行它,想在將來某個時刻去執行它,那用工作佇列準沒錯.大概會想到中斷也是這樣,提供一箇中斷服務函式,在發生中斷的時候去執行,沒錯,和中斷相比,工作佇列最大的好處就是可以排程可以睡眠,靈活性更好。
上面程式碼中我們看到INIT_WORK(&ps_data->stk_ps_work, stk_ps_work_func);,其實是一個巨集的定義,在include/linux/workqueue.h中。stk_ps_work_func()就是我們定義的功能函式,用於查詢讀取Sensor的距離感測器資料的,並上報Input子系統,程式碼如下:
1 static void stk_ps_work_func(struct work_struct *work)
2 {
3 struct stk3x1x_data *ps_data = container_of(work, struct stk3x1x_data, stk_ps_work);
4 uint32_t reading;
5 int32_t near_far_state;
6 uint8_t org_flag_reg;
7 int32_t ret;
8 uint8_t disable_flag = 0;
9 mutex_lock(&ps_data->io_lock);
10
11 org_flag_reg = stk3x1x_get_flag(ps_data);
12 if(org_flag_reg < 0)
13 {
14 printk(KERN_ERR "%s: get_status_reg fail, ret=%d", __func__, org_flag_reg);
15 goto err_i2c_rw;
16 }
17 near_far_state = (org_flag_reg & STK_FLG_NF_MASK)?1:0;
18 reading = stk3x1x_get_ps_reading(ps_data);
19 if(ps_data->ps_distance_last != near_far_state)
20 {
21 ps_data->ps_distance_last = near_far_state;
22 input_report_abs(ps_data->ps_input_dev, ABS_DISTANCE, near_far_state); //input上報資料
23 input_sync(ps_data->ps_input_dev); //input_sync()在這裡不起關鍵作用。但如果是一個觸控式螢幕,即有x座標和y座標,則需要通過input_sync()函式把x和y座標完整地傳遞給輸入子系統。
24 wake_lock_timeout(&ps_data->ps_wakelock, 3*HZ);
25 #ifdef STK_DEBUG_PRINTF
26 printk(KERN_INFO "%s: ps input event %d cm, ps code = %dn",__func__, near_far_state, reading);
27 #endif
28 }
29 ret = stk3x1x_set_flag(ps_data, org_flag_reg, disable_flag);
30 if(ret < 0)
31 {
32 printk(KERN_ERR "%s:stk3x1x_set_flag fail, ret=%dn", __func__, ret);
33 goto err_i2c_rw;
34 }
35
36 mutex_unlock(&ps_data->io_lock);
37 return;
38
39 err_i2c_rw:
40 mutex_unlock(&ps_data->io_lock);
41 msleep(30);
42 return;
43 }
2.3 建立sysfs介面:
為什麼要建立sysfs介面?在驅動層建立了sysfs介面,HAL層通過這些sysfs介面,對Sensor進行操作,如使能、設定delay等。
DEVICE_ATTR的使用:http://blog.csdn.net/njuitjf/article/details/16849333
函式巨集DEVICE_ATTR內封裝的是__ATTR(_name,_mode,_show,_stroe)方法:
_show:表示的是讀方法,_stroe表示的是寫方法。
1、 呼叫巨集DEVICE_ATTR完成對功能函式的註冊:
1 static struct device_attribute ps_enable_attribute = __ATTR(enable,0664,stk_ps_enable_show,stk_ps_enable_store);
2 static struct device_attribute ps_enable_aso_attribute = __ATTR(enableaso,0664,stk_ps_enable_aso_show,stk_ps_enable_aso_store);
3 static struct device_attribute ps_distance_attribute = __ATTR(distance,0664,stk_ps_distance_show, stk_ps_distance_store);
4 static struct device_attribute ps_offset_attribute = __ATTR(offset,0664,stk_ps_offset_show, stk_ps_offset_store);
5 static struct device_attribute ps_code_attribute = __ATTR(code, 0444, stk_ps_code_show, NULL);
6 static struct device_attribute ps_code_thd_l_attribute = __ATTR(codethdl,0664,stk_ps_code_thd_l_show,stk_ps_code_thd_l_store);
7 static struct device_attribute ps_code_thd_h_attribute = __ATTR(codethdh,0664,stk_ps_code_thd_h_show,stk_ps_code_thd_h_store);
8 static struct device_attribute recv_attribute = __ATTR(recv,0664,stk_recv_show,stk_recv_store);
9 static struct device_attribute send_attribute = __ATTR(send,0664,stk_send_show, stk_send_store);
10 static struct device_attribute all_reg_attribute = __ATTR(allreg, 0444, stk_all_reg_show, NULL);
11
12 static struct attribute *stk_ps_attrs [] =
13 {
14 &ps_enable_attribute.attr,
15 &ps_enable_aso_attribute.attr,
16 &ps_distance_attribute.attr,
17 &ps_offset_attribute.attr,
18 &ps_code_attribute.attr,
19 &ps_code_thd_l_attribute.attr,
20 &ps_code_thd_h_attribute.attr,
21 &recv_attribute.attr,
22 &send_attribute.attr,
23 &all_reg_attribute.attr,
24 NULL
25 };
26
27 static struct attribute_group stk_ps_attribute_group = {
28 .attrs = stk_ps_attrs,
29 };
在probe函式中:
1 err = sysfs_create_group(&ps_data->als_input_dev->dev.kobj, &stk_als_attribute_group);
2 if (err < 0)
3 {
4 printk(KERN_ERR "%s:could not create sysfs group for alsn", __func__);
5 goto err_als_input_allocate;
6 }
7 err = sysfs_create_group(&ps_data->ps_input_dev->dev.kobj, &stk_ps_attribute_group);
8 if (err < 0)
9 {
10 printk(KERN_ERR "%s:could not create sysfs group for psn", __func__);
11 goto err_ps_sysfs_create_group;
12 }
到此,完成了sysfs介面的建立,我們可以在根檔案系統中看到/sys/class/input/input1/目錄,在該目錄下我們可以看到多個節點,其中就包含了enable和delay。我們以enable為例子,可以有兩種方法完成對Gsensor的使能工作:
3、讀取上報資料:
在Android的HAL層,通過對/sys/class/input/input3/enable節點的寫操作,使能sensor。呼叫到的方法是stk_ps_enable_store函式:
1 static struct device_attribute ps_enable_attribute = __ATTR(enable,0664,stk_ps_enable_show,stk_ps_enable_store);
2 static struct device_attribute ps_enable_aso_attribute = __ATTR(enableaso,0664,stk_ps_enable_aso_show,stk_ps_enable_aso_store);
3 static struct device_attribute ps_distance_attribute = __ATTR(distance,0664,stk_ps_distance_show, stk_ps_distance_store);
4 static struct device_attribute ps_offset_attribute = __ATTR(offset,0664,stk_ps_offset_show, stk_ps_offset_store);
5 static struct device_attribute ps_code_attribute = __ATTR(code, 0444, stk_ps_code_show, NULL);
6 static struct device_attribute ps_code_thd_l_attribute = __ATTR(codethdl,0664,stk_ps_code_thd_l_show,stk_ps_code_thd_l_store);
7 static struct device_attribute ps_code_thd_h_attribute = __ATTR(codethdh,0664,stk_ps_code_thd_h_show,stk_ps_code_thd_h_store);
8 static struct device_attribute recv_attribute = __ATTR(recv,0664,stk_recv_show,stk_recv_store);
9 static struct device_attribute send_attribute = __ATTR(send,0664,stk_send_show, stk_send_store);
10 static struct device_attribute all_reg_attribute = __ATTR(allreg, 0444, stk_all_reg_show, NULL);
裡面的show和store函式;
1 static ssize_t stk_ps_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
2 {
3 struct stk3x1x_data *ps_data = dev_get_drvdata(dev);
4 uint8_t en;
5 if (sysfs_streq(buf, "1"))
6 en = 1;
7 else if (sysfs_streq(buf, "0"))
8 en = 0;
9 else
10 {
11 printk(KERN_ERR "%s, invalid value %dn", __func__, *buf);
12 return -EINVAL;
13 }
14 dev_dbg(dev, "%s: Enable PS : %dn", __func__, en);
15 mutex_lock(&ps_data->io_lock);
16 stk3x1x_enable_ps(ps_data, en);
17 mutex_unlock(&ps_data->io_lock);
18 return size;
19 }
1 static int32_t stk3x1x_enable_ps(struct stk3x1x_data *ps_data, uint8_t enable)
2 {
3 int32_t ret;
4 uint8_t w_state_reg;
5 uint8_t curr_ps_enable;
6 curr_ps_enable = ps_data->ps_enabled?1:0;
7 if(curr_ps_enable == enable)
8 return 0;
9
10 if (enable) {
11 ret = stk3x1x_device_ctl(ps_data, enable);
12 if (ret)
13 return ret;
14 }
15
16 ret = i2c_smbus_read_byte_data(ps_data->client, STK_STATE_REG);
17 if (ret < 0)
18 {
19 printk(KERN_ERR "%s: write i2c error, ret=%dn", __func__, ret);
20 return ret;
21 }
22 w_state_reg = ret;
23 w_state_reg &= ~(STK_STATE_EN_PS_MASK | STK_STATE_EN_WAIT_MASK | 0x60);
24 if(enable)
25 {
26 w_state_reg |= STK_STATE_EN_PS_MASK;
27 if(!(ps_data->als_enabled))
28 w_state_reg |= STK_STATE_EN_WAIT_MASK;
29 }
30 ret = i2c_smbus_write_byte_data(ps_data->client, STK_STATE_REG, w_state_reg);
31 if (ret < 0)
32 {
33 printk(KERN_ERR "%s: write i2c error, ret=%dn", __func__, ret);
34 return ret;
35 }
36
37 if(enable)
38 {
39 #ifdef STK_POLL_PS
40 hrtimer_start(&ps_data->ps_timer, ps_data->ps_poll_delay, HRTIMER_MODE_REL); //定時一段時間後,開始開啟工作佇列
41 ps_data->ps_distance_last = -1;
42 #endif
43 ps_data->ps_enabled = true;
44 #ifndef STK_POLL_PS
45 #ifndef STK_POLL_ALS
46 if(!(ps_data->als_enabled))
47 #endif /* #ifndef STK_POLL_ALS */
48 enable_irq(ps_data->irq);
49 msleep(1);
50 ret = stk3x1x_get_flag(ps_data);
51 if (ret < 0)
52 {
53 printk(KERN_ERR "%s: read i2c error, ret=%dn", __func__, ret);
54 return ret;
55 }
56
57 near_far_state = ret & STK_FLG_NF_MASK;
58 ps_data->ps_distance_last = near_far_state;
59 input_report_abs(ps_data->ps_input_dev, ABS_DISTANCE, near_far_state);
60 input_sync(ps_data->ps_input_dev);
61 wake_lock_timeout(&ps_data->ps_wakelock, 3*HZ);
62 reading = stk3x1x_get_ps_reading(ps_data);
63 dev_dbg(&ps_data->client->dev,
64 "%s: ps input event=%d, ps code = %dn",
65 __func__, near_far_state, reading);
66 #endif /* #ifndef STK_POLL_PS */
67 }
68 else
69 {
70 #ifdef STK_POLL_PS
71 hrtimer_cancel(&ps_data->ps_timer);
72 #else
73 #ifndef STK_POLL_ALS
74 if(!(ps_data->als_enabled))
75 #endif
76 disable_irq(ps_data->irq);
77 #endif
78 ps_data->ps_enabled = false;
79 }
80 if (!enable) {
81 ret = stk3x1x_device_ctl(ps_data, enable);
82 if (ret)
83 return ret;
84 }
85
86 return ret;
87 }
1 static enum hrtimer_restart stk_als_timer_func(struct hrtimer *timer)
2 {
3 struct stk3x1x_data *ps_data = container_of(timer, struct stk3x1x_data, als_timer);
4 queue_work(ps_data->stk_als_wq, &ps_data->stk_als_work); //開啟工作佇列
5 hrtimer_forward_now(&ps_data->als_timer, ps_data->als_poll_delay);
6 return HRTIMER_RESTART;
7 }
那麼對於HAL層,將通過/dev/input/event1裝置節點讀取到sensor資料。到此,sensor驅動的工作流程完畢。應該很好理解吧!